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Abstract

The symmetry of the superconductivity in Bechgaard salts is still unknown, though the
triplet pairing has been established by Hc2 and NMR for (TMTSF)2PF6. The large upper

critical field at T = 0K (Hc2 ~ 5 Tesla) both for  and  also indicates strongly
the triplet pairing.
Here we start with a low energy effective Hamiltonian and study the temperature
dependence of the corresponding Hc2(T)'s.

The present analysis suggests that one chiral f-wave superconductor should be the most
likely candidate near the upper critical field.

PACS Codes: 74.70.Kn ; 74.20.Rp; 74.25.Op.

Introduction
The Bechgaard salt (TMTSF)2 PF6 is the first organic superconductor discovered in 1980 [1]. Until

very recently the superconductivity was believed to be conventional s-wave [2]. More recently the

symmetry of the superconductivity has become one of the central issues [3]. The upper critical

field at T = 0K in (TMTSF)2PF6 and (TMTSF)2ClO4 are clearly beyond the Pauli limit [4-7], sug-

gesting triplet pairing. Recent NMR data [8,9] from (TMTSF)2PF6 supports triplet superconduc-

tivity.

Here we shall first derive Hc2(T) for a variety of p-wave and f-wave superconductors [8]. Later,

we will discuss the relation between the nuclear spin relaxation rate and the nodal lines.
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Theoretical model

In the following we shall examine the upper critical field of these superconductors following the

standard method initiated by Gor'kov [10] and extended by Luk'yanchuk and Mineev [11] for

unconventional superconductors. Also we take the quasiparticle energy in the normal state as in

the standard model for Bechgaard salts [2]

with v : vb : vc ~ 1 : 1/10 : 1/300 and v = va, vb =  and vc = ; for example, P. M. Grant

[12] gives vc ~ 1 meV, tb ~ 26.2 meV and ta ~ 365 meV.

There are earlier analysis of Hc2 of Bechgaard salts starting from the one dimensional models

[13,14]. However, those models predict diverging Hc2(T) for T  0K or the reentrance behaviour,

which have not been observed in the experiments [4,5]. The one dimensional model, like the one

proposed by Lebed [13,15] is valid only when 2tc < 2.14Tc ~ 3 K, in Bechgaard salts it is believed

that the transfer integral in the c direction is 2tc ~ 10 – 30 K while the superconducting transition

temperature is Tc ~ 1.2 K, so the 1D model is unrealistic. Also, the quasilinear T dependence of

Hc2(T) in both (TMTSF)2PF6 and (TMTSF)2ClO4 is very unusual.

We consider a 3D model, though strongly anisotropic. We start with a continuum model,

where the cristal anisotropy is incorporated only through the great anisotropies of the Fermi

velocities. We have considered chiral superconductors because these symmetries have been

shown to lead to higher Hc2s. In the absence of an applied magnetic field, we could obtain one

of those chiral states as a combination of two different order parameters (with two different tran-

sition temperatures), but the external magnetic field breaks the time reversal symmetry, allowing

the formation of a chiral state in the superconducting phase (see [16]).

Among the symmetries we have considered, the chiral f'-wave superconductor with

, looks most promising, where 1 =  and 2 =  are 

and  the cristal vectors.

Moreover, if the superconductor belongs to one of the nodal superconductors [17,18] and if

nodes lay parallel to  within the two sheets of the Fermi surface, the angle dependent nuclear

spin relaxation rate  in a magnetic field rotated within the b' - c* plane will tell the nodal

directions.

Before proceeding, we show |(( )| of two chiral f-wave superconductors in Fig. 1a) and 1b).
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1 Results and discussion

Upper critical field for 

In the following we neglect the spin component of . Most likely the equal spin pairing is

realised in Bechgaard salts as in Sr2RuO4 [3]. In this case the spin component is characterized by

a unit vector . Also  is most likely oriented parallel to . Let's assume , though Hc2(T)

is independent of  as long as the spin orbit interaction is negligible. Experimental data from

both UPt3 and Sr2RuO4 indicate that the spin-orbit interactions in these systems are not negligi-

ble but extremely small [3]. We consider a variety of triplet superconductors (see some of them

in Fig. 1), most of them chiral variants, as we find in general that the chiral variant has larger Hc2

than the non-chiral one:

Simple p-wave SC: 

Following [17,18] the upper critical field is determined by

Sketch of the order parametersFigure 1

Sketch of the order parameters. |( )| of chiral f-wave and chiral f'-wave SC are sketched in a) and b) respec-

tively, where  and  

for chiral f and chiral f'.
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where

and , and �...� means average over 2.

Here va, vc are the Fermi velocities parallel to the a axis and the c axis respectively.

Here we assumed that ( ) is given by [17,18]:

where  is the Abrikosov state [19], Cn the occupancy of the nth

Landau level (we assume there is only one occupied Landau level) and

 is the raising operator.

Then in the vicinity of t  1 we find  and .

For t  0 on the other hand we obtain

and C = -0.031. From these we obtain

Both 0(t) and C(t) are evaluated numerically and shown in Fig. 2a) and b) respectively. Here

0(t) = t2(t) = va vceHc2(t)/2(2Tc)
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Chiral p-wave SC: 

Here  is the analogue of e if in the 3D systems in the quasi 1D system.

For a chiral state the Abrikosov function is written as [20]:

where . Then we obtain eq. 2–3 with

and the same expressions for t, ,...

For t  1 we find  and  = 0.3838(-ln t).

On the other hand, for t  0 we obtain C = -0.3660 and 0 = 0.27343.

From these we obtain h(0) = 0.71324. We obtain (t) and C(t) numerically. They are shown

in Fig. 2a) and 2b) respectively.

Upper critical field for Figure 2

Upper critical field for . Normalised Hc2(t) and C(t) for  are shown in a) and b) respectively. 

Here black, red and blue lines are chiral f'-wave, chiral p-wave and simple p-wave respectively. Chiral f-wave has the 
same Hc2(t) as chiral p-wave.

 
H b|| ′

 
H b|| ′


Δ( ) / ( ) sin( )k sgn k ia= +1 2 2

1
2 2sgn k ia( ) sin( )+ 

Δ( , ) ~ ( ( ) )
 
r k s Cs a+ 〉∗ 2 (9)

s sgn k ia= +1
2 2( ) sin( )

K e s Csu s
1

2 42 2
2= 〈 −( )〉− | | | | (10)

K e s C s u s u su s
2

4 2 2 2 2 4 42 2
1 4 2= 〈 − + − +( )( )〉−  | | | | | | | | (11)

C = − = −1 1 5 0 2247. .
Page 5 of 11
(page number not for citation purposes)



PMC Physics B 2008, 1:19 http://www.physmathcentral.com/1754-0429/1/19
Chiral f-wave SC: 

Hc2(t) is determined from eq. 2–3 where now:

Here now  means the average over both 1 and 2. As in previous sections,

 (s depends on the direction of the magnetic field). Then it is easy to see

that the chiral f-wave SC has the same Hc2(t) and C(t) as the chiral p-wave SC, since the variable

1 is readily integrated out.

Chiral f'-wave SC: 

Now we have a set of equations similar to the chiral f-wave except (1 + cos 21) in both eqs. 13

has to be replaced by (1 + cos 21). We obtain, for t  1, C = -0.2247 and  = 0.5181(-ln t).

On the other hand, for t  0 we find C = -0.3660 and 0 = 0.3734.

We show 0 and C(t) of the chiral f'-wave in Fig. 2a) and 2b) respectively.

Note that C(t) is the same for three chiral states (chiral p-wave, chiral f-wave and chiral f'-

wave) as well as chiral p-wave studied in [20].

Therefore for the magnetic field , the chiral f'-wave have the largest Hc2(t) if we assume

Tc and v, vc are the same. Also Hc2(t) of these states are closest to the observation.

Upper critical field for 

In this section, we assume the applied magnetic field runs parallel to the direction defined by .

We calculate the upper critical field in these circunstances for different symmetries of the order

parameter, following the same procedure as the one we used in previous section.

Simple p-wave SC: 

The equation for Hc2(t) is given by [17,18] and can be written as in eq. 2–3 with:
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where  and s = (sin 1 +  sin 2) with 1 =  and 2 = .

Then for t  1, we find  and . While for t  0

 and , where 0 = -�ln|s|2� =

0.220051 and . From these we obtain h(0) = 0.73673.

Both h(t) and C(t) are evaluated numerically and we show them in Fig. 3a) and 3b) respec-

tively.

Chiral p-wave SC: 

Now Hc2(t) is determined by a similar set of equations as Ec. 10–11. Now, s = (sin 1 +  sin 2).

In particular we find for t  1 C = -0.027735 and  = 0.212598(ln t) while for t  0 C = -

0.067684 and 0 = 0.139672. We obtain h(0) = 0.6566. We show h(t) and C(t) in Fig. 3a) and

3b) respectively.

Chiral f-wave SC: 

Again we use a similar set of equations as Ec. 12–13, with s = (sin 1 +  sin 2), we find for t 

1 C = -0.0356236 and  = 0.2744495(ln t) while for t  0 C = 0.066 and 0 = 0.1920 and h(0) =

0.6997. Both h(t) and C(t) are evaluated numerically and shown in Fig. 3a) and 3b).

Chiral f'-wave SC: 

Now we find for t  1 C = -0.05 and  = -0.2910(ln t), while for t  0 C = -0.1019 and 0 =

0.2090.

We have shown again h(t) and C(t) in Fig. 3a) and 3b) respectively.

Comparing these results with Hc2(T) from (TMTSF)2PF6 and (TMTSF)2ClO4 [4,5], we can con-

clude that for both  and , the chiral f'-wave SC is most consistent with experimental
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data. In particular these states have relatively large h(0) (see Table 1). On the other hand almost

the same Hc2(0) for  and  has to be still accounted.

Nodal lines in ( )

We have seen that from the temperature dependence of Hc2(T), we can deduce the chiral f-wave

and chiral f'-wave superconductors are the most favourable candidates. They have nodal lines on

the Fermi surface (i.e. the 1 - 2 plane), the chiral f-wave SC at 1 = , while chiral f'-wave SC

at 2 = .

Upper critical field for Figure 3

Upper critical field for . Normalised Hc2(t) and C(t) for  are shown in a) and b) respectively. Here 

black, red, blue and green lines are chiral f'-wave, chiral f-wave, chiral p-wave and simple p-wave respectively.

Table 1: Summary of results. Here  and 

symmetry C(0) C(1) 0(0) h(0)

p-wave -0.031 0 0.2377 0.1583 0.6659
chiral p-wave -0.2247 -0.3660 0.3838 0.2734 0.71324
chiral f'-wave -0.2247 -0.3660 0.5181 0.3734 0.72073

p-wave -0.017 0 0.2377 0.1751 0,7366
chiral p-wave -0.066 -0.028 0.2126 0.1396 0,6566
chiral f-wave -0.066 -0.035 0.2744 0.1920 0.6997
chiral f'-wave -0.1019 -0.05 0.2910 0.2090 0,7182

 
H a||

 
H a||

 
H b|| ′

 
H a||


k

± 
2

± 
2


0

2
2 0

2 2 20( ) ( )

( )
= v eHc

Tc
h Hc

Hc t
t t

( ) ( )
( )

|
0 2 0

2 1
= ∂

∂ =

− =∂
∂

t t| 1

H b|| ′


H a||
Page 8 of 11
(page number not for citation purposes)



PMC Physics B 2008, 1:19 http://www.physmathcentral.com/1754-0429/1/19
These nodal lines may be detected if the nuclear spin relaxation rate is measured in a magnetic

field rotated within the b' - c* plane.

Following the standard procedure given in [21], the quasiparticle density of states in the vortex

state for T <<Tc and E = 0 is given by

where 10 is the position of the nodal line (i.e. the angle that defines the line on which (k) = 0).

So for the chiral f-wave SC we find 10 =  and N (0, ) exhibits the simple angular dependence.

On the other hand when nodal lines are on the 2 axis, the  dependence will be too small to see.

Finally this gives

for the chiral f-wave SC.

We show the  dependence of  in Fig. 4 for a few candidates. The chiral f-wave SC has the

strongest  dependence (solid line) while the chiral h-wave SC (dashed line) and the chiral p-

wave SC (dotted line) have a similar  dependence.

Conclusion
We have computed the upper critical field of Bechgaard salts for a variety of nodal superconduc-

tors with the standard microscopic theory. The results are shown in Fig. 2 and 3. We find:

a) Assuming all these superconductors have the same Tc, the chiral f'-wave SC

 appears to be the most favourable with largest Hc2's for

both  and .

b) However, non of these states exhibit the quasilinear temperature dependence of Hc2(T) as

observed in [3].
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c) Also the present theory predicts Hc2(0) ~ (va vc)
-1 and (vb vc)

-1 for  and  respec-

tively. This means Hc2(0) for  is about 5 time larger than the one for  contrary to

observation.

d) From Hc2(0) ~ 5T and Tc = 1.5 K we can extract v2 =  ~ 1.5104 cm s-1,

consistent with the known values of va, vc.

We have also shown that the nodal lines should be visible through the angle dependent 

in NMR with the magnetic field rotating in the c*-b' plane.
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