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Abstract

A comparative study of two earlier three-state and fifteen-state [Chaudhuri et al., Pramana-
J. Phys., 43, 175 (1994); ibid., Phys. Rev. A, 52, 1137 (1995)] close-coupled treatments of
He2+-He single and double charge transfer collisions is made in this paper with a larger,
27-state close-coupled calculation. The calculations have been done using the diabatic
molecular basis set used in the earlier work extended by adding excited orbitals leading to
higher excitation channels up to 3s and 3p. For such molecular basis functions that go to
the correct separated-atom limits used in this work, the present results show that without
the inclusion of the electron translation factors (ETFs) the quantitative cross-section
calculations up to velocity ~1.1 a.u. (~30 keV/amu) are in good agreement with both
experiment and other calculations. This suggests that if ETFs are properly incorporated
into the charge transfer collision studies at low energies this diabatic molecular basis can
be used for benchmark calculations. With the aid of the Wannier's picture of the ground
state correlations, a combined detailed analysis and comparison has been carried out to
find a connection with the dynamic two-electron correlation picture in charge transfer
collision processes which involve sequential/simultaneous two-electron exchange. If ETFs
are included, the model approach of the present work may open up opportunities to
investigate dynamic two-electron correlation effect in charge transfer ion-atom collision
processes with benchmark accuracy.

PACS codes: 34.70.+e, 34.20.-b

1. Introduction
We have previously [1,2] made use of a diabatic molecular basis expansion constructed in a sim-

ilar spirit as in an earlier work [3], to carry out a close-coupled study of single and double charge

transfer in He2+-He(1s2) collisions in the impact parameter approximation without electron

translation factors (ETFs). The salient features of the results obtained in [1] and [2] can be sum-

marized as follows.
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1. For single charge transfer into the ground state, the basis can be truncated very early; there

was hardly any difference between the three-state [1] and the fifteen-state [2] results.

2. For resonant double charge transfer, the early truncation was not possible. The results of the

fifteen-state calculation agreed very well with experiment [4,5] up to around 10 keV/amu, above

which the calculated results dropped rather markedly. It could not be ascertained whether the

discrepancy at higher energies was due to the basis set truncation, or due to the neglect of ETFs,

or both.

3. The total single charge transfer cross-sections obtained by summing over charge transfer

channels into the ground state as well as target/projectile excitation channels in the fifteen-state

calculations agreed very well with experiment. The individual channel excitations agreed fairly

well with a close-coupled calculation done by Fritsch [6] using travelling atomic orbitals, and

showed a very similar energy variation.

In our earlier work [2] it was noted that in the three-state calculation very little configuration

interaction (CI) had been included in the wave function (of the collision complex), whereas a

considerable amount of CI went in the fifteen-state basis. Hence, the dynamic electron correlation

phenomena could be involved in two-electron rearrangement collisions. This phenomena failed

to appear in the 3-state calculations, but it should show up in the fifteen-state calculations. How-

ever, discussion of this point in [2] was limited to the degree of success (or lack of it) in predicting

total charge transfer cross-sections alone. This article presents a theoretical investigation of the He2+-

He(1s2) charge transfer collision system with a 27-state diabatic molecular basis-set including

excitation channels up to (3s, 3p) without ETFs, (the consistency of the exclusion of ETFs in the

3-state [1], 15-state [2] and 27-state calculations throughout is preserved). From a detailed com-

parative study among the 3-state [1], 15-state [2] and 27-state, the present work focuses on the

investigation of the dynamic electron correlation in the two-electron ion-atom collision system

He2+-He(1s2) with the help of the Wannier's picture of the ground state correlations. For this pur-

pose, the present results are compared mainly with the radial and angular electron correlation in

a two-electron atomic system in Wannier's [7] study.

This work is carried out mainly with an aim that, whether or not, present approach based on

the close-coupled 27-state diabatic molecular basis calculations without ETFs can be applied to

investigate complicated and interesting dynamic electron correlation behaviour in a two-electron

ion-atom collision system. In other view, if one can choose to study the phenomena of dynamic

correlated behaviour of electronic motions in ion-atom/molecule collisions with computational

ease (i.e., neglecting ETFs) using the model approach of the present work, or not.
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2. Theoretical method

The total electronic Hamiltonian of HeA + HeB
2+ system is given by (atomic units are used

throughout)

Here  and  are the position vectors of electron 1 and electron 2 relative to the origin

(center of mass of the system), respectively.  where  and  are the posi-

tion vectors of the HeA and HeB nuclei from relative to the origin, respectively. W is the electron-

electron interaction term and 4/R is the internuclear potential energy.

First we expand the total wavefunction of the collision system in a body-fixed truncated

molecular basis,

Then in the semiclassical impact-parameter approximation, the time dependent Schrödinger

equation takes the form (for details see [3])

With the same sprit as in [3], for use in eqns.(2) and (3) we define the diabatic molecular basis

as follows

where  and  are column vectors,  is the orbital exponent, SR is the Schmidt orthonormaliza-

tion matrix and U diagonalizes �S|Hel|S� at large R. Table 1 gives the basis functions k's used

to construct the diabatic molecular wavefunctions k's (cf. eqn.(3) in [2]), whereas Table 2 (data

in the fourth column are collected from Ref.[8]) gives the separated-atom limits of the former. As

before, the molecular orbitals were built up with a minimal Slater basis.

These have been adequately described earlier [1,2]; suffice it to say that in this paper the dia-

batic basis has been extended to include up to (3s,3p) excitations in the separated-atom limit

which form 27-state basis-set expansions. For computational ease and to keep the consistency in
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Table 1: Basis functions (normalized) used to construct the diabatic molecular wavefunctions. The {A, B} denotes the 
spatially symmetric (singlet) combination (A1B2 + A2B1)(12 - 21) where ,  are "up" and "down" spin functions and A, B 
are spatial MO's.

Singlet g-state

Singlet u-state

  1
1
2

2 21 1= −[ ( ) ( ) ]g us s

  2
1
2

2 21 1= +[ ( ) ( ) ]g us s

    3
1
2 1 2 1 2= −+ +[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    4
1
2 1 2 1 2= ++ +[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    5
1
2 1 2 1 2= −[{ ( ) ( )} { ( ) ( )}]g g u us s s s

    6
1
2 1 2 1 2= +[{ ( ) ( )} { ( ) ( )}]g g u us s s s

    7
1
2 0 01 2 1 2= −[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    8
1
2 0 01 2 1 2= +[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    9
1
2 1 3 1 3= −[{ ( ) ( )} { ( ) ( )}]g g u us s s s

    10
1
2 1 3 1 3= +[{ ( ) ( )} { ( ) ( )}]g g u us s s s

    11
1
2 0 01 3 1 3= −[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    12
1
2 0 01 3 1 3= +[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    13
1
2 1 3 1 3= −+ +[{ ( ) ( )} { ( ) ( )}]g g u us p s p

    14
1
2 1 3 1 3= ++ +[{ ( ) ( )} { ( ) ( )}]g g u us p s p

  15
1
2

1 1= { ( ) ( )}g us s

    16
1
2 1 2 1 2= −+ +[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    17
1
2 1 2 1 2= ++ +[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    18
1
2 1 2 1 2= −[{ ( ) ( )} { ( ) ( )}]g u u gs s s s

    19
1
2 1 2 1 2= +[{ ( ) ( )} { ( ) ( )}]g u u gs s s s

    20
1
2 0 01 2 1 2= −[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    21
1
2 0 01 2 1 2= +[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    22
1
2 1 3 1 3= −[{ ( ) ( )} { ( ) ( )}]g u u gs s s s

    23
1
2 1 3 1 3= +[{ ( ) ( )} { ( ) ( )}]g u u gs s s s

    24
1
2 0 01 3 1 3= −[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    25
1
2 0 01 3 1 3= +[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    26
1
2 1 3 1 3= −+ +[{ ( ) ( )} { ( ) ( )}]g u u gs p s p

    27
1
2 1 3 1 3= ++ +[{ ( ) ( )} { ( ) ( )}]g u u gs p s p
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the 3-state, 15-state and 27-state calculations throughout, the ETFs have been neglected in the

present calculation. The center of mass coincides with the center of charge for a symmetric sys-

tem, and it has been chosen as the origin of the co-ordinates in [1,2] and in the present work. In

this work the equations to be solved are (using the notations and procedure of [2])

where the Hamiltonian matrix elements Hjk = <j|Hel|k> and the rotational coupling matrix ele-

ments .

Because of the choice of the origin at the centre of the internuclear line, the g and u subsets of

the coupled eqn.(5) separate, and they were solved by the Bulirsch-Stoer method [9], unitarity

being preserved to within 4–5 parts in 104 (or better). The different charge transfer channel prob-

abilities were then determined using similar formulas as (8) in [2], whereupon the different

channel cross-sections were obtained by standard methods.

i
dC j
dt

C H Q i H H dtk jk jk jj kk
k j

= + −∫∑
≠

( )exp[ ( ) ]
,1 27

(5)

Q ijk
vb

R
j k= < − >∂

∂2  | |

Table 2: Separated-atom behavior of the basis states.

Basis functions Separated-atom limit Energy (a.u.) calculated at R = 50 a.u. Energy (a.u.) from Ref. [8]

1 {1sA(1)1sB(2)} -3.98000 -3.97963
2 [1sA(1)1sA(2) + 1sB(1)1sB(2)] -2.85176 -2.90335
3 {1sB(1)2p+A(2)} - {1sA(1)2p+B(2)} -2.47999 -2.47978
4 {1sA(1)2p+A(2)} - {1sB(1)2p+B(2)} -2.12229 -2.12363
5 {1sA(1)2sB(2)} + {1sB(1)2sA(2)} -2.47442 -2.47978
6 {1sA(1)2sA(2)} + {1sB(1)2sB(2)} -2.14028 -2.14576
7 {1sB(1)2p0A(2)} - {1sA(1)2p0B(2)} -2.48001 -2.47978
8 {1sA(1)2p0A(2)} - {1sB(1)2p0B(2)} -2.12226 -2.12363
9 {1sB(1)3sA(2)} + {1sA(1)3sB(2)} -2.19596 -2.20201
10 {1sA(1)3sA(2)} + {1sB(1)3sB(2)} -2.06322 -2.06109
11 {1sB(1)3p0A(2)} - {1sA(1)3p0B(2)} -2.20189 -2.20201
12 {1sA(1)3p0A(2)} - {1sB(1)3p0B(2)} -2.05084 -2.05495
13 {1sB(1)3p+A(2)} - {1sA(1)3p+B(2)} -2.20140 -2.20201
14 {1sA(1)3p+A(2)} - {1sB(1)3p+B(2)} -2.05377 -2.05495

15 {1sA(1)1s+A(2)} - {1sB(1)1sB(2)} -2.85161 -2.90335
16 {1sA(1)2p+B(2)} + {1sB(1)2p+A(2)} -2.47999 -2.47978
17 {1sA(1)2p+A(2)} + {1sB(1)2p+B(2)} -2.12229 -2.12363
18 {1sB(1)2sA(2)} - {1sA(1)2sB(2)} -2.47452 -2.47978
19 {1sA(1)2sA(2)} - {1sB(1)2pB(2)} -2.14051 -2.14576
20 {1sA(1)2p0B(2)} + {1sB(1)2p0A(2)} -2.47989 -2.47978
21 {1sA(1)2p0A(2)} + {1sB(1)2p0B(2)} -2.12214 -2.12363
22 {1sB(1)3sA(2)} - {1sA(1)3sB(2)} -2.19609 -2.20201
23 {1sA(1)3sA(2)} - {1sB(1)3sB(2)} -2.06317 -2.06109
24 {1sB(1)3p0A(2)} + {1sA(1)3p0B(2)} -2.20195 -2.20201
25 {1sA(1)3p0A(2)} + {1sB(1)3p0B(2)} -2.05078 -2.05495
26 {1sB(1)3p+A(2)} + {1sA(1)3p+B(2)} -2.20140 -2.20201
27 {1sA(1)3p+A(2)} + {1sB(1)3p+B(2)} -2.05382 -2.05495
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(A) Some diabatic diagonal Hamiltonian matrix elements (Hkk) for new g-states plotted against internuclear dis-tance RFigure 1
(A) Some diabatic diagonal Hamiltonian matrix elements (Hkk) for new g-states plotted against 
internuclear distance R. (B) Same for new u-states plotted against internuclear distance R. For numbering of 
the states |k>, see Table 1.

A

B
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3. Results
The following charge transfer reactions have been studied:

(i) Single capture:

[(nl)'s are excited-state configurations]

(ii) Resonant double capture:

at laboratory energies up to ~30 keV/amu. As in [2], simultaneous target and projectile excitation

channels have been ignored.

He s He He s He sA B A B( ) ( ) ( )1 1 12 2+ → ++ + + (6a)

He nl He sA B
+ ++( ) ( )1 (6b)

He s He nlA B
+ ++( ) ( )1 (6c)

He s He He He sA B A B( ) ( )1 12 2 2 2+ → ++ + (7)

Single charge transfer cross sections for reaction (6a) plotted as function of laboratory energyFigure 2
Single charge transfer cross sections for reaction (6a) plotted as function of laboratory energy. Dark 
triangles: present calculation (27-state basis); open circles: 15-state basis calculation [2]; dashed line: 3-state calcula-
tion [1]; dotted line: Fulton and Mittleman [10]; dark circles: Afrosimov's data [4].
Page 7 of 20
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(A-E). Comparison of resonant double charge transfer probabilities among 27-state calculation (solid line), 15-state calculation (dashed line) and 3-state calculation (dotted line) at energies 2, 5, 7.5, 15 and 25 keV/amu, respectivelyFigure 3
(A-E). Comparison of resonant double charge transfer probabilities among 27-state calculation 
(solid line), 15-state calculation (dashed line) and 3-state calculation (dotted line) at energies 2, 5, 
7.5, 15 and 25 keV/amu, respectively.
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In [2] we showed the R-variation of some diabatic Hamiltonian matrix elements Hjk involving

states covering up to 2s-2p excitations. The diabatic Hamiltonians involving the new states (cov-

ering up to 3s-3p excitations) considered in this paper have very similar R-variations, as shown

in Figs. 1. A qualitative and quantitative comparison of the diagonal Hamiltonian matrix ele-

ments (Hkk) of the six new g state (Fig. 1A) and six new u states (Fig. 1B of the present calculation

with those of the 3-state [1] and 15-state calculation [2] can be done from scale of the abscissa

and ordinate. The plots of Hkk in Figs.1 supplement to those of our earlier work [1,2]. The rota-

tional coupling elements Qjk are remarkably free from spurious asymptotic behaviour, as already

shown earlier [3].

Fig.2 shows the ground-state single capture (channel (6a) above) cross-sections, as obtained

in the 3-state, 15-state and the 27-state calculations. Also shown for comparison are the experi-

mental data of Afrosimov et al. [4,5]. It is clear that for this reaction channel, early truncation of

the diabatic basis after three states gives sufficiently accurate cross-sections, as had already been

noted in [1,2]. Inclusion of excited states, up to (2s, 2p) in [2] and up to (3s, 3p) in the present

work seems to produce little effect gradually, though a certain oscillatory nature appears in the

respective contributions. This point will be discussed again shortly. Cross-sections for the total

single capture, summed over reaction channels (6a – 6c), differ very little from [2] and are not

shown.

Resonant double charge transfer cross sections for reaction channel (7) plotted against energyFigure 4
Resonant double charge transfer cross sections for reaction channel (7) plotted against energy. Dark 
triangles: present calculation (27-state basis); open circles: 15-state basis calculation [2]; dashed line: 3-state calcula-
tion [1]; solid line: Kimura [11]; dotted line: Fulton and Mittleman [10]; dark circles: Afrosimov's data [5].
Page 9 of 20
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Figs. 3A–E display the probabilities (Pk, k = 3, 15 and 27) against orbital angular momentum

l for the resonant double capture channel for 3-state, 15-state and 27-state calculations at a few

different energies (2, 5, 7.5, 15 and 25 keV/amu). The impact parameter b has been equated to

the orbital angular momentum l via the semiclassical equivalence relationship ,

where  is the reduced mass of the system and v the relative velocity. The dependence of the P-

values upon the size of the diabatic basis chosen is discussed in the next section in the light of

Wannier's theory of electron correlation in a two-electron system.

Fig.4 represents the resonant double charge transfer cross-sections obtained in the 27-state cal-

culations; also shown for comparison are the 3-state and 15-state results already exhibited in [2],

the data of Afrosimov et al. [5], the three-state travelling atomic orbital basis calculations of Ful-

ton and Mittleman [10] and the travelling adiabatic molecular basis calculations of Kimura [11].

The next section illustrates that if dynamic electron correlation is properly taken into account by

configuration interaction then charge transfer reactions in ion-atom collisions can be very well

described in close-coupled calculations using these molecular basis functions used in the present

work without inclusion of momentum translation factors (ETFs), unless one requires benchmark

results.

4. Implication of dynamic electron correlation
From Fig.4 it is evident that the 3-state, the 15-state and the 27-state calculations agree progres-

sively better with the experiment on resonant double charge transfer to the ground state. For a

one-electron system, the only error involved lies in truncating the sum – dubbed the "resolution

of the identity" —

after a finite number of terms that introduces the error, commonly known as the 'size effect', in

close-coupled calculations.

At this point note that with any arbitrary choice of basis we can always resort to a "brute force"

technique to eliminate, or at least minimize, this error, but to keep within a reasonable size, we

must see that the chosen basis does exhibit some properties of the wave function of the system

under study. For a two-electron system, an additional property that comes into the picture is elec-

tron correlation. It was in this context that the usefulness of a configuration interaction to incor-

porate a certain degree of electron correlation was discussed in our earlier work [2] where we

showed that, in our diabatic basis, early truncation of the series involves a sacrifice of configura-

tion interaction and can lead to neglect of electron correlation. (This was, of course, a demon-

stration of a point already made by Smith [12].)

b l v= +( ) /1
2  

1
1

=
=

∞

∑ n n
n

(8)
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It is notable, however, that when quantum chemistry deals with electron correlation and

incorporating the same in a one-electron orbital picture via configuration interaction, it actually

means static correlation, defining the "correlation energy" as the difference between the exact

(non-relativistic) energy and the Hartree-Fock energy, the latter being the best possible single-

configuration energy within the orbital picture. In contrast, in a collision process we are actually

interested in the dynamic correlation, i.e. correlated behaviour of two electrons involved in a col-

lision process. For the present purposes it is defined as to be the "behavioural pattern" of the two

active electrons in an atomic collision under circumstances when they seem to move "concert-

edly"; obviously one can generally expect such patterns in all two-electron processes.

Let us recall the Coulomb potential for the two electrons in Helium. Expressed in the hyper-

spherical coordinates, it reads (see e.g. [13])

Here 'hyperradius' , 'hyperangle'  = tan-1(r2/r1) and 12 is the angle between the

position vectors  and  for the two electrons. The coulomb potential V(R, , 12) contains the

radial correlation through R and , and the angular correlation through C(, 12). Fig. 5 illus-

trates the potential surface function C(, 12) on the (, 12)-plane; the shaded area shows the

"Wannier ridge". Wannier [7] showed that a pair of electrons, which travel along trajectories

diverging about this ridge, i.e. move correlatedly such that r1  r2 and  i.e., keeping the

opposite sides of the nucleus, would emerge together from the atom at near-threshold energies.

As a consequence of the Wannier picture, therefore, it is quite expected that when a bare He

nucleus approaches the He atom, correlation effects should show up in the double charge trans-

fer dynamics, provided the following conditions are satisfied:

(4.1) the two electrons attached to the target have been moving preferentially along the Wan-

nier ridge,

(4.2) the impact velocity is of the order of (more exactly, neither much smaller nor much larger

than) the orbital velocity of the electrons, and

(4.3) the impact parameter lies within a few (typically ~3) times the hyper-radius R.

V R
e
R

C

C

( , , ) ( , ),

( , )
cos sin cos sin

   

 
  

12 12

12

2

2 2 1
1 12 2

=

= − − +
− 

R r r= +1
2

2
2


r1


r2

ˆ ˆr r1 2≈ −
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In the ground-state Helium atom the two electrons are strongly correlated, and the condition

(4.1) is well satisfied. As a consequence of (4.1), static correlation would be carried over as

dynamic correlation. Regarding (4.2), note that two-electron capture in an ion-atom collision

can occur (conceptually) either as a sequential, two-step process or as a simultaneous double cap-

ture process [14], and condition (4.2) is essentially the obvious requirement that electron corre-

lation would be important only if sequential capture does not predominate over simultaneous

capture of the two electrons. Apart from this, condition (4.2) also follows from the fact that at

energies much above threshold, the Wannier picture of radial correlation ceases to hold. Condi-

tion (4.3) states that the projectile ion must be moving close enough to the target atom so that,

during capture, the two electrons can pass over without "riding" too high up the ridge; in the lat-

ter eventuality, the probability is high that the two-electron system would 'slide down' one of the

valleys ( = 0 or 2) i.e., the target would lose only one electron. From Fig.5 we see that a rough

estimate for this can be made by requiring angular correlation that after capture, 12  18°, i.e.,

the impact parameter lies within ~3 times the hyper-radius of the target atom. It is obvious that

fulfillment (or not) of this condition can depend crucially on the choice of the orbital basis; for

example, inclusion of excited orbitals offers the collision system to expand to a larger size.

Whether or not, it really does expand is a matter of the actual dynamic calculation of the collision

system. If any one of these conditions is violated, there would be little or no effect of electron

correlation on the double charge transfer channel.

Plot displays the function C(, 12) (vertical axis) versus  and 12; the shaded area shows the "Wannier ridge"Figure 5
Plot displays the function C(, 12) (vertical axis) versus  and 12; the shaded area shows the "Wan-
nier ridge".
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To incorporate such investigations in a theoretical study, one has two alternatives:

(1) Use basis functions of a type that involves the interelectronic distance explicitly, or

(2) Use a conventional (atomic or molecular) orbital basis. It is obvious that a much larger

basis set would be required here than in (1) above to achieve the same degree of configuration

interaction.

Basis functions of type (1) include Hylleraas-type functions, Jacobi polynomials (using hyper-

spherical coordinates), etc. Although the methodology of (1) above is a more "direct" approach

to study electron correlation, its use in atomic collision problems is beset with mathematical dif-

ficulties, and (to our knowledge) it has not been attempted yet for the problem of electron trans-

fer in ion-atom collisions. This article attempts that through the inclusion of CI in a close-

coupled treatment using the diabatic molecular basis used in this work, one should be able to

establish contact with the Wannier picture outlined above and may glean an idea of the dynamic

aspect of electron correlation in a double charge transfer ion-atom collision.

As already noted, the differences between the smaller-basis and the larger-basis calculations

in this two-electron system stem from two factors; the basis size effect and the electron correlation

effect. The problem of separating out the signatures of the 'size effect' from those of the 'dynamic

correlation effect' in the calculated results has no unique solution, but the following procedure

which could be taken as an indication, has been adopted for the present study. Eqn.(8) is, of

course, equivalent to the equation (1) of [2] and the 'basis expansion equation' (2) of the present

calculation. In the present calculation, eqn.(8) is translated as the unitarity condition

where, ck(t) = �k|� (k  |n�).

Now let us define the quantities

where the summations in S3 and S15 extend over the states included in the earlier [1,2] 3-state and

15-state studies, respectively; the c's refer to the present calculation. A glance at Table 1 shows that

in S3, the summation runs over k = 1, 2 and 15 (correspond to the same basis states as in ref. [1]),

whereas in S15 it runs over k = 1–8 and 15–21 (correspond to the same basis states as in ref. [2]).

The fractions x3 and x15 are taken as approximate measures of the respective fractional improve-
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ments in the present calculations over the 3-state and over the 15-state calculations as far as the

"size effect" is concerned. As regards the electron correlation effect, we should be careful to interpret

the results and we should remember that it is not only the large basis size but also the fulfillment

of conditions (4.2) and (4.3) above is a prime necessity to bring out the dynamic correlation

effects in the calculated results of the collision process. If the said conditions are not satisfied, the

difference between the small-basis and the large-basis results simply display a "size effect" and

not dynamic electron correlation. This is a subtle point which, if lost or ignored, can lead to the

confusion and doubt. Comparing the present calculations with our earlier work [1,2] we find that

at low energy the 'size effect' is very little (not serious) for the single charge transfer and the series

can truncated early, while the 'size effect' is serious and significant for double electron capture,

and the early truncation of the series is inappropriate and cannot be done.

After this preamble, we do need to examine whether the detailed dynamical results obtained

in this study reveal any signature of dynamic electron correlation. Table 3 gives the numerical val-

ues of the differences of probabilities (P3 - P27) and (P15 - P27), where Pks, k = 3, 15 and 27, are

the resonant double electron capture probabilities obtained from the k-state calculations of the

earlier works [1,2] and from the present work, respectively, with the corresponding values of x3

and x15 (x27 = 0 by definition) at a few values of l spread over the rightmost peaks in the P-l curves

in Figs.3. These peaks have chosen because they contribute the most to the total charge transfer

cross-sections. Also, we take the quantities (P3 - P27) and (P15 - P27) — or, to be more exact, the

nature of their variation with the impact parameter — to be a measure of the total effect of the

configuration interaction in the present work, including both the "size effect" and the dynamic corre-

lation effect (if any), as compared to the earlier works.

From what has been said above, the effect of dynamic electron correlation at different energies

should be capable of being singled out from a plot of the differences xk - (Pk - P27) = Dk (say) where

k = 3,15, versus the impact parameter, in conjunction with the natures of (Pk - P27) (k = 3, 15) in

Table 3. Figures 6A–E show these quantities at five energies 2, 5, 7.5, 15 and 25 keV/amu, the

same as in Figs. 3. At the two lowest energies (2 and 5 keV/amu), there is very little qualitative

difference between the two curves, whereas at higher energies a remarkable difference in the b-

variation of the two curves sets in. It is seen to note the following features:

(i) The extrema of the curves coincide more or less with the peaks of the P - l curves of Figs. 3.

(ii) Towards high energies the extrema positions seem to satisfy the condition (4.3), whereas

at the lower energies the extrema lie farther than allowed by the said condition. In this connec-

tion, it is notable that with the 27-state wavefunction including 3p and 3p orbitals (both g and

u), the effective 'size' of the collision system is larger than that in the 15-state calculation.
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Table 3: Separating out different effects in configuration interaction. See text for details.

l x3 P3 - P27 x15 P15 - P27

[2 keV/amu]
1400 0.048 0 0.005 0.071
1500 0.058 0.024 0.002 0.078
1600 0.061 0.050 0.001 0.068
1700 0.061 0.061 0.001 0.049
1800 0.070 0.053 0.001 0.020
1900 0.087 0.038 0.001 0

[5 keV/amu]
1800 0.114 0.053 0.021 0
1900 0.106 0.071 0.012 0
2000 0.097 0.080 0.008 -0.004
2100 0.084 0.072 0.005 -0.014
2200 0.065 0.062 0.005 -0.026
2300 0.047 0.043 0.004 -0.046
2400 0.039 0.030 0.004 -0.055
2500 0.040 0.022 0.004 -0.058
2600 0.047 0.016 0.004 -0.058
2700 0.057 0.018 0.004 -0.051
2800 0.065 0.018 0.004 -0.043
2900 0.067 0.017 0.004 -0.035
3000 0.062 0.017 0.004 -0.028

[7.5 keV/amu]
2000 0.113 0.078 0.036 -0.070
2200 0.066 0.068 0.018 -0.104
2400 0.056 0.061 0.008 -0.112
2600 0.059 0.063 0.005 -0.084
2800 0.055 0.058 0.003 -0.060
3000 0.044 0.042 0.003 -0.052
3200 0.040 0.022 0.004 -0.054
3400 0.049 0.008 0.006 -0.054
3600 0.068 0.004 0.008 -0.061

[15 keV/amu]
2000 0.295 0.139 0.116 -0.016
2400 0.217 0.183 0.091 -0.195
2800 0.164 0.158 0.049 -0.309
3200 0.123 0.109 0.036 -0.290
3600 0.098 0.071 0.025 -0.272
4000 0.092 0.039 0.019 -0.196
4400 0.087 0.016 0.016 -0.145
4800 0.074 0.005 0.013 -0.099
5400 0.058 0.005 -0.005 -0.055

[25 keV/amu]
2000 0.539 0.247 0.230 -0.039
2400 0.445 0.286 0.179 -0.124
2800 0.386 0.294 0.132 -0.226
3200 0.330 0.268 0.104 -0.305
3600 0.282 0.247 0.082 -0.322
4000 0.237 0.202 0.059 -0.311
4400 0.197 0.155 0.043 -0.275
4800 0.165 0.109 0.029 -0.228
5200 0.150 0.074 0.021 -0.187
5600 0.151 0.031 0.019 -0.148
6000 0.100 0.011 0.020 -0.112
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(A-E). Full lines show D3 and dashed lines show D15 (see text) against l at the same energies (2, 5, 7.5, 15 and 25 keV/amu), respectively, as the corresponding Figs. 3Figure 6
(A-E). Full lines show D3 and dashed lines show D15 (see text) against l at the same energies (2, 5, 7.5, 
15 and 25 keV/amu), respectively, as the corresponding Figs. 3.
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(iii) The impact velocities at the higher energies satisfy the condition(4.2) better than those at

the lower energies do.

From these features one can find that effects of increase in the basis size at the low energies

are contained almost completely in the "size effect"; a glance at Table 3 shows that this effect is

almost saturated for the 15-state calculations. However, at the higher energies although the con-

vergence (towards saturation) appeared in the 15-state results, i.e., columns x15, in Table 3, the

curves in Figs.6 indicate a distinct "overshooting" (peaked at around l = 2300, 2600 and 3800 at

7.5, 15 and 25 keV/amu energies, respectively) due to the size effect in the 15-state calculations.

The minima (negative values) of the total effect of the configuration interaction including the

'size effect' and 'dynamic electron correlation effect', (P15 - P27) appeared at around l = 2300, 3200

and 3800 at 7.5, 15 and 25 keV/amu energies, respectively, in Table 3, and x27 = 0 by definition,

this explains the 'size effect' in the 15-state calculations is "compensated for" in the 27-state cal-

culations, by the dynamic electron correlation. Considering the P-b curves (i.e., P - l curves) in

Figs.3, the 3-state results simply mimic the behaviour of single-electron capture of two electrons,

as if the two electrons are moving independently; but other results show distinct dynamic corre-

lation effects between the two electrons. (See the Appendix for a more detailed and quantitative

exposition). Besides, this becomes more obvious when one compares the Figs.3 with the corre-

sponding Figs.6. If we study the Figs. 3A and 3C, we find that the velocity in the latter is nearly

twice that in the former, both being less than the orbital electron velocity (which is of order unity

in a.u.). Note that although l ~1650 in Fig. 3A and l ~ 3000 in Fig. 3C correspond nearly to the

same impact parameter, a comparison of Figs. 6A and 6C shows that it is only in the figures (C)

and not in the figures (A) that the difference between the 3-state and the 27-state results can be

attributed to dynamic correlation. This subtle point can be verified by comparing the other fig-

ures – Fig. 3B and 3E, at l ~ 2000 and l ~ 4000 respectively. Also, in figs. 3D and 3E we find a

large difference between the 3-state peak and the 15-state peak around l ~ 4000 but recognize it

more likely to be a basis-set size effect than a signature of dynamic electron correlation, because

condition (4.3) is not well satisfied here for these two basis sets. On the other hand, with 27-state

wavefunction including diffuse orbitals, the effective "size" of the collision complex is larger and

correspondingly closer to the impact parameter, this satisfying condition (4.3); as such, the dif-

ference between the 3-state and the 27-state results in this two figures does indicate signature of

the dynamic electron correlation.

Moreover, we still have to answer the question: Does the double charge transfer experiment

show any evidence of electron correlation, as indicated in this theoretical study? The answer that

is provided by the total double charge transfer cross-section data is fairly definitive in this regard.

It has been shown in the last paragraph how the double charge transfer probability values

(shown in Figs.3) towards large l – the region which contributes the most to the total cross-section –

are affected by dynamic electron correlation when large basis sets are used. The fact that towards

the higher energies the 3-state, 15-state and 27-state calculations yield progressively better agree-
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ments with experiment as shown in Fig.4, coupled with the above feature brought out in the

Figs.3, provides numerical evidence that dynamic electron correlation seems to play an impor-

tant role in the resonant two-electron transfer channel. As already mentioned, at the lowest ener-

gies (~1–4 keV/amu) the differences between the three sets of results reflect merely the basis-set

size effect and cannot be construed to testify to dynamic electron correlation. Noteworthy that

although a slight discrepancy with experiment persists in the energy region above 10 keV/amu,

its magnitude is much less than that for the 15-state results. An odd feature, namely that the dis-

crepancy has the opposite sign, seems to indicate that as one goes on increasing the size of the dia-

batic basis in the close-coupling approach, the proper (asymptotic) amount of CI that is required

to fully incorporate the electron correlation is approached in an oscillatory fashion. (This feature

also appears in the single capture results as shown in Fig.2, as mentioned above in Section 3.) An

earlier study of electron impact ionization of He carried out by Bray and Fursa [15] also displays

this oscillatory convergence of close-coupled calculations. Also, at these energies, Kimura's [10]

results are bracketed by Afrosimov's data on the one side and by present 27-state results on the

other. This seems convincing that, up to energies of  30 keV/amu, i.e. for velocities up to  1.1

a.u., unless we require benchmark accuracy in the results, electron translational factors would not

need to be included in present kind of diabatic molecular basis where the configuration interac-

tion has been properly included to investigate two-electron ion-atom collision system. This

agrees with the observation of Zygelman et al.[16] that 'a molecular state expansion without elec-

tron translation factors is a valid low-energy approximation', mentioned in [2] as well.

It is expected that if the two electronic charges (-2e) are taken together as an equivalent single

'pseudo-electron' of charge -q = -2e (-e is the real electronic charge and -q is the equivalent doubly

charged single 'pseudo-electron'), and the corresponding mass corrections are done for interac-

tion Hamiltonians and rotational coupling matrix elements, the whole process of resonant dou-

ble electron capture should be possible to be studied by carrying out a 'one-pseudo-electron'

calculation. In this case the doubly charged single 'pseudo-electron' of charge -q is exchanged

from He atom to Heq+ ion [HeA(1s2) + HeB
q+  HeA

q+ + HeB(1s2)], i.e., correlated motion of two

electrons, and one should get direct results of pure simultaneous two-electron transfer probabil-

ities and hence the cross sections at different energies. The above illustration would provide

another probable way to investigate the dynamic two-electron correlation effects in ion-atom

charge transfer collisions (planning to apply this to the same HeA + HeB
2+ system at low energies

in future).

5. Conclusion

Comparison of a 27-state close-coupled calculation of He2+-He charge transfer collision with ear-

lier 3-state and 15-state calculations suggests that (i) dynamic electron correlation effects become

visible as the basis set is progressively increased, i.e., as the configuration interaction is taken into

account more properly, provided the mentioned conditions in section-4 are satisfied, and (ii)

present results provide the importance of these correlation effects in the resonant two-electron
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transfer at low (but not too low) energies. Also, for the diabatic molecular basis representation

used in this work which go over to the correct separated-atom energy limits, the results indicate

that electron translation factors (ETFs) may not need to be included in charge transfer collision

studies in this energy range, unless we need benchmark accuracy. However, if ETFs are properly

incorporated into the charge transfer collision studies at low energies, these diabatic molecular

basis states can be used for benchmark calculations. In the energy range under consideration, the

static ground state correlation as given in the Wannier picture seems to connect with and would

go over into dynamic electron correlation in doubly charged ion-atom collision processes under

suitable conditions. The present work may shed light on ion-atom interactions and dynamic two-

electron correlation pictures of the charge transfer ion-atom collisions at low energies.

Appendix
The interpretation here, that the 3-state results in Figs. 3A–E mimicking a resonant single-electron

transfer behaviour indicate independent and not correlated motion of the electrons, is derived

here in a more quantitative fashion. For the former case the probability amplitudes for transfer

of the two individual electrons are uncorrelated, and one may write the joint two-electron trans-

fer probability in the form

where a1 and a2 are the respective (normalized) transfer amplitudes for this resonant case and

P(1) and P(2) are the individual transfer probabilities; by symmetry they are equal, and hence

P(1,2) would show the same features as they. On the other hand, for dynamically correlated

motion the two-electron transfer amplitude is no longer given by the product of the two individ-

ual amplitudes a1, a2, but rather by a correlated transfer amplitude a1,2, which in general agrees nei-

ther in amplitude nor in phase with the said product. The traces of the phase effects might be involved

and might show up in the probabilities.

A comparison of the figures 3A–E shows that as we travel up energy and impact parameter, so

that the conditions (4.2) and (4.3) are better satisfied (see the last two paragraphs in Sec. 4), the

27-state results for the joint two-electron resonant transfer probabilities show distinctly both

these aspects of correlation effects (amplitude and phase mismatch) as compared to the 3-state

results; the latter mimic the "sin2" behaviour of a resonant single-electron transfer and pass very

much like a candidate for the uncorrelated P(1,2) above.
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