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Abstract

We use a fully relativistic layer Green's functions approach to investigate spin-dependent
tunneling through a symmetric indirect band gap barrier like GaAs/AlAs/GaAs
heterostructure along [100] direction. The method is based on Linear Muffin Tin Orbitals
and it is within the Density Functional Theory (DFT) in the Local Density Approximation
(LDA). We find that the results of our ab-initio calculations are in good agreement with the
predictions of our previous empirical tight binding model [Phys. Rev. B, 075313 (2006)].
In addition we show the k||-dependence of the spin polarization which we did not
previously include in the model. The ab-initio calculations indicate a strong k||-dependence
of the transmission and the spin polarization due to band non-parabolicity. A large window
of 25–50% spin polarization was found for a barrier of 8 AlAs monolayers at k|| = 0.03 2π/
a. Our calculations show clearly that the appearance of energy windows with significant
spin polarization depends mostly on the location of transmission resonances and their
corresponding zeros and not on the magnitude of the spin splitting in the barrier.

PACS Codes: 71.70.Ej, 71.15.Mb, 71.55.Eq

Background
The possibility of spin-polarized transmission through a zinc-blende semiconductor symmetric

barrier was investigated in a few previous articles [1-3]. In Ref. [1] only direct band gap materials

were considered for the barrier. Nevertheless, many zinc-blende wide band gap semiconductors

are indirect, therefore the indirect tunneling through a barrier must also be considered. This fea-

ture was addressed in Ref. [2]. The authors argued that the linear-k spin-orbit splitting at X point

will induce larger effect than the k3-term at Γ point [2]. They found an energy window around

the top of the barrier, where the effect arising from the linear-k term at X point is larger than the

effect stemming from the k3-term at Γ point.
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Mishra et al. made no reference to the importance of the interaction between the discrete states

at the X valley in the barrier and the continuum [2]. In their work, the authors considered the

electrons close to the top of the indirect barrier, where the indirect tunneling becomes dominant

[2]. In our previous work [3] we have shown that, at these energies, the Γ-X mixing plays a greater

role than Mishra et al. suggested [2]. We have also considered the Fano resonances that occur

because of the interaction between the discrete states at the X point in the barrier and the contin-

uum at the Γ point in the contacts. To be more precise, in such systems an incident electron can

tunnel either directly through evanescent Γ state in the barrier or through quasi-bound X state in

the barrier. The resonance occurs due to resonant tunneling through quasi-bound X state, while

the anti-resonance occurs due to destructive interference between the two channels of electron

transmission [4]. Below or above the resonance the two channels are out of phase. The zero in

the transmission occurs whenever the amplitude magnitudes of the two channels become equal.

In our previous paper [3] we have used a realistic empirical tight binding model to give a unified

description of the spin dependent tunneling through an indirect symmetric barrier with the

GaAs/AlAs/GaAs heterostructure as an example. We showed several interesting aspects of such

process, with particular emphasis on the large energy windows of spin polarization that can be

obtained when appropriate conditions are satisfied.

Although our study presented quantitative results, several simplifications were made. The

tight-binding Hamiltonian assumes parabolic conduction bands and it does not distinguish

between X1 and X3 states [3], whereas the conduction band minimum is at Δ, along Γ-X line.

Moreover, the complex structure of spin-dependent evanescent states in the band gap was com-

pletely ignored. This complicated structure of spin-dependent evanescent states might play an

important role in the spin-dependent transport due to the meV scale on which the spin splittings

occur [5-7]. In the present paper we extend the previous work [3] by reporting the results of the

first ab-initio multiband study of spin-dependent tunneling through a zinc-blende barrier. The

calculations are performed at the LDA level of the DFT with its well-known shortcomings regard-

ing the band gaps and the effective masses. From the point of view of device modeling this may

constitute a handicap; tools like sp3d5s*[8] full band semi-empirical tight-binding would perform

a better job in reproducing band gaps, effective masses, and complex and imaginary bands. In

this work we are checking if the main points made in the previous work [3] (namely, the criteria

needed for obtaining large energy windows with significant spin polarization) are still valid in

the context of truly multi-band calculations. The current calculations take into account the full

band structure of the GaAs/AlAs/GaAs [100] heterostructure (including the spin dependency of

the imaginary bands in the barrier) and, unlike our previous two-band tight-binding calcula-

tions, the ab-initio multiband calculations show that the nonparabolicity should be also consid-

ered in order to obtain large spin polarization.
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Results and discussion
Our approach is based on the fully-relativistic first-principles transport method. The method is

based on the Green's function representation of the tight-binding linear muffin-tin orbital (TB-

LMTO) basis in the atomic spheres approximation [9]. Within the relativistic formulation of the

Local Spin Density Approximation (LSDA) in which only the spin component of the current den-

sity is taken into account [10], inside each atomic sphere we solve the Kohn-Sham Dirac equation

[11]

where,

Here,  is the vector of Pauli matrices,  is the momentum operator, and  is the unit vector

in the direction of the effective magnetic field inside the Muffin-Tin (MT) sphere. The energy E is

referenced to the total relativistic energy W = mc2+E. The effective magnetic field in equation (1)

can be found as B(r) = (V↑(r)+V↓)(r)/2 [12]. The solutions of the Kohn-Sham Dirac equation are

linear combinations of bispinors:

Here, Ωκμ( ) are the spin spherical harmonics, μ is the projection of the total angular momen-

tum and κ is the relativistic quantum number: κ2 = J(J + 1) + .

Within the fully relativistic LMTO method the boundary conditions at the MT radius s are

given in the form of two matrix equations [13,14]
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where, N(E), P(E), D(E) and g(E) are 2 × 2 matrices for each value of κ, μ and site R. N(E) and

P(E) are arbitrary matrices defined by the boundary conditions, with elements the κ, μ compo-

nents of the so called potential and normalization functions defined in the scalar relativistic

LMTO method [15]. D(E, s) and g(E, s) are matrices with elements the κ, μ components of loga-

rithmic derivative and large component of the wave function. The primary difference of this work

with previous fully relativistic formulations of LMTO method is that we use the third-order par-

ametrization of the potential functions [16,17]: the radial amplitudes are expanded up to quad-

ratic terms in linearization energy εν,

The Green's function of the layered system is constructed by the principal-layer technique

[13]. The layers from -∞ to 0 and from N + 1 to ∞ are the contacts, while the layers from 1 to N

are the active layers. Then, the transmission coefficient within the Landauer-Büttiker approach

[18] can be calculated as

where,

Bp(k||, E) = i [Γp(k||, z+) - Γp(k||, z-)], (9)

with p = 1,N, z± = E ± iε and

The surface Green's functions of the electrodes  are constructed scalar-relativisti-

cally, which allows us to decompose the conductance into spin-conserving and spin-flip compo-

nents [19]. g1,N and gN,1 are the upper right corner and lower left corner components of the

auxiliary Green's function matrix

g = [P-S]-1. (11)

Here, P is the fully relativistic potential function (6) and S the tridiagonal matrix of scalar rel-

ativistic structure constants [15].
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The heterostructure is 'grown' in the [100] direction. We have tried two different geometries:

one where the left semi-infinite GaAs is separated from the right semi-infinite GaAs by 4 monol-

ayers of AlAs and another where the separation is 8 monolayers. The self-consistent charge dis-

tribution is achieved within scalar-relativistic TB-LMTO calculations for GaAs/AlAs

heterostructures treated using supercells with 6 monolayers of GaAs separated by the number of

AlAs monolayers that correspond to the above mentioned geometries. The transmission is calcu-

lated at zero bias with lateral k|| taken in the [001] direction.

In GaAs we included only Ga 4d orbitals, which provide a slightly larger fundamental band

gap than it is normally predicted within LDA (when Ga 3d orbitals are included in the basis). The

important part of the calculated band structures of GaAs and AlAs are shown in Fig. 1. The GaAs

direct band gap is 0.53 eV compared to the experimental value of 1.52 eV, the AlAs direct (Γ-Γ)

and indirect (fundamental) gaps are 2.22 eV and 1.25 eV, respectively, compared to the experi-

mental values of 3.13 eV and 2.23 eV, respectively. We would like to point out that the energies

examined in this work are in the vicinity of conduction band minimum. Even though the band

gaps are smaller than the experimental they are big enough to ensure that the complex band

structure around conduction minimum has the correct character [19]. Based on this justification,

LDA based transport calculations through heterostructures that include semiconductors have

been used before [20] and revealed important information that is impossible to obtain from a

model calculation. The effective mass of incoming electrons is smaller than the experimental

value and this is an inherent problem of the LDA; to this date the proper treatment of electron-

electron correlations in ab-initio transport methods has not been addressed and to our knowl-

edge and experience it is a very difficult problem on it's own. In fact, even the most sophisticated

techniques, like GW (G = Green's function, W = screened Coulomb interaction) approximation,

cannot match the experimental effective mass and ad-hoc adjustments are required [21]; moreo-

ver these sophisticated techniques require heavy computational resources hence they are used

only in bulk geometry. The use of such techniques in layered or supercell geometry is currently

out of question. Also, ad-hoc techniques are known to have difficulty in matching simultaneously

both the band gap and effective mass to the experiment. For example, in Ref. [22], while the band

gap of GaAs is correct, the conduction band minimum effective mass is off by 33%. In the prob-

lem we are currently examinining the GaAs electron effective mass controls only the width of the

Fano resonances. As we will explain straightaway, several other parameters that are related to our

problem are predicted well. The valence band offset is 0.36 eV in good agreement with previously

calculated from the individual bulk materials [23]. The conduction band offset (Γ-X) is 0.37 eV.

Many important features of the tunneling relevant to our discussion are controlled by the con-

duction band offset and the Dresselhaus splitting in the vicinity of X point of AlAs [3]. In the het-

erostructure there is a charge transfer that increases the valence band offset to 0.53 eV and

therefore we obtain a value of 0.2 eV for the conduction band offset, which is very close to the

value used in our empirical tight-binding calculations (0.16 eV) [3]. The coefficient β for the lin-

ear Dresselhaus splitting at X point (ΔE = βk||)comes out at 0.108 eVÅ. There are no available
Page 5 of 10
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experimental estimates for β. In Ref. [21] the LDA bands and Dresselhaus splittings where com-

pared to the predictions of the 'scaled' Quasiparticle self-consistent GW (QSGW) method which

gives very accurate predictions of band eigenvalues and eigenvectors. It was found that both

methods agree very well at the X point. Not surprisingly, the agreement is also good for the trans-

verse and longitudinal effective masses for AlAs. The LDA values for transverse and longitudinal

masses are 0.232 m0 and 0.836 m0, respectively, while the QSGW method predicts 0.225 m0 and

0.738 m0, respectively. While β dictates the magnitude of the spin splitting of the quasi-bound

levels at X, the effective masses together with the barrier width dictate their energy position

(hence, separation). Therefore, despite the apparent shortcoming of the LDA to give an overall

reliable prediction of the conduction band structure of the materials involved here, separate

aspects that are important in the process of indirect tunneling are predicted well.

In Fig. 2 we show the transmission for a heterostructure with 4 monolayers of AlAs. For k|| =

0.03 2π/a the tunneling starts at approximately -0.4 eV (for k|| = 0 it would start at approximately

-0.5 eV). Below -0.3 eV the tunneling transmission exhibits a typical direct tunneling behavior,

and the spin polarization is insignificantly small. Between -0.3 and -0.2 eV the tunneling electron

experiences the first Fano resonance-antiresonance due to the interaction with the discrete levels

in the X valley well; the resonances and zeros for the two spin channels occur at slightly different

energies, resulting in the sharp peaks of spin polarization seen in the second panel of Fig. 2. A

Fully-relativistic LMTO-ASA within LDA band structures of AlAs and GaAsFigure 1
Fully-relativistic LMTO-ASA within LDA band structures of AlAs and GaAs. The band structures of AlAs and GaAs 
are plotted with dashed red line and solid blue line, respectively. The valence band offset is 0.36 eV, the GaAs direct 
band gap is 0.53 eV, the AlAs direct (Γ-Γ) and indirect (fundamental) gaps are 2.22 eV and 1.25 eV, respectively. 
The conduction band offset (Γ-X) is 0.37 eV.
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second resonance-antiresonance occurs just below 0.05 eV, resulting in another spin polarization

'hot spot'. Generally, for the given values of k|| and barrier size we find only 'hot spots' of spin

polarization in the vicinity of Fano resonances, but no energy windows of large spin polarization.

In Fig. 3 we show the transmission for the same values of k|| but for a heterostructure with 8 mon-

olayers of AlAs. For k|| = 0.03 2π/a, there is a 0.05 eV energy window, around -0.2 eV, where the

spin polarization of the transmission is approximately 25%, but no such window is observed for

k|| = 0.06 2π/a. The Dresselhaus splitting is bigger for the latter value of k||, but the spin polariza-

tion of the transmission coefficient is smaller. This non-trivial behavior was predicted by the

empirical tight-binding model that we used previously: the well separated resonances below and

above -0.2 eV for k|| = 0.03 2π/a make the polarization window relatively wide [3]. As it was pre-

dicted by Ref. [3], wider barriers provide better conditions for well separated resonances and a

proper order of corresponding antiresonances. In contrast, for k|| = 0.06 2π/a the transmission

coefficient is very different due to nonparabolicity of the bands, (parabolic bands would provide

The transmission coefficient and its spin polarization for a GaAs/(AlAs)4/GaAs single barrier structureFigure 2
The transmission coefficient and its spin polarization for a GaAs/(AlAs)4/GaAs single barrier structure. The red 
solid line is for 'spin-up' and the blue dashed line is for 'spin-down'. Two cases of k|| are shown. Hot spots of large 
spin polarization exist in the vicinity of Fano resonances.
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more or less similar transmission coefficient for different k||) thereby the spin polarization is less

efficiently filtered in the barrier. The same pattern is also observed in Fig. 2, i.e., there are very

different transmission coefficients for different values of k||. Therefore, our ab-initio calculations

show that the full k||-dependence should be considered in order to have a more realistic picture

of the spin polarization.

We make a comment on the ab-initio method that we use in this paper. The surface Green

functions of the left/right semi-infinite GaAs regions are scalar-relativistic, thus the Dresselhaus

term is not taken into account in there. We consider also GaAs layers in the active region where

the Hamiltonian is fully relativistic, but the transmission is for an electron that starts at the left

semi-infinite and ends at the right semi-infinite region. However, we already questioned the

The transmission coefficient and its spin polarization for a GaAs/(AlAs)8/GaAs single barrier structureFigure 3
The transmission coefficient and its spin polarization for a GaAs/(AlAs)8/GaAs single barrier structure. The red 
solid line is for 'spin-up' and the blue dashed line is for 'spin-down'. Two cases of k|| are shown. One energy window 
of large spin polarization exists in the vicinity of -0.2 eV for k|| = 0.03 2π/a. No such window is obtained for k|| = 
0.06 2π/a. This shows that efficient spin polarization can be obtained independently of the magnitude of Dressel-
haus splitting.
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importance of the Dresselhaus term in contacts [24]. The related calculations [25] show that this

term has a minor effect on the overall spin polarization with a much greater role played by the

current operator. In our ab-initio calculations the current operator is properly taken into account.

Finally, we comment about experimental aspects of the present subject. An experimental setup

would measure currents with contributions from all other energy and momentum values that, in

principles, will wash out the spin polarization. For instance, electronic states with the same

energy, corresponding to k|| and -k||, will have opposite spins, thus the total current will carry the

same amount of spin-up and spin-down. To fix these aspects we already suggested [3] that the

electrons should be injected from a resonant tunneling diode in order to focus the electrons in

the k||-plane [26]. Moreover, by applying a voltage bias in the k||-plane of the emitter [27,28], the

isotropy of k|| will be further broken, thus a net spin polarization will be induced in the energy

window.

Conclusion
In conclusion, we applied a fully-relativistic first-principles transport method to the spin-depend-

ent tunneling through a GaAs/AlAs/GaAs [100] heterostructure. The method is based on the

Green's function representation of the Tight-Binding Linear Muffin-Tin Orbital basis in the

Atomic Spheres Approximation. The calculations were performed in the Local Spin Density

Approximation within the Density Functional Theory.

Considering the full band structure of the GaAs/AlAs/GaAs [100] system, these calculations

confirm previous general predictions made with a simplified empirical tight-binding method.

Namely, in order to have windows with large spin polarizations, two conditions need to be sat-

isfied: the first is to have well separated resonances such that their corresponding anti-resonances

do not interact with each other and the second is that the energy order of the resonances in the

spin channels have to be the same as the energy order of their corresponding zeros.

We found a large energy window of 25–50% spin polarization for a barrier of 8 AlAs monol-

ayers at k|| = 0.03 2π/a, but there is no such energy window at k|| = 0.06 2π/a. Our study suggests

that, in order to find energy windows with large spin polarization, a detailed knowledge of the

energy dependence on k|| and spin must be considered.
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