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Abstract

We investigate the effect of a microwave field on a confined two dimensional electron gas
which contains an insulating region comparable to the Fermi wavelength. The insulating
region causes the electron wave function to vanish in that region. We describe the
insulating region as a static vortex. The vortex carries a flux which is determined by
vanishing of the charge density of the electronic fluid due to the insulating region. The sign
of the vorticity for a hole is opposite to the vorticity for adding additional electrons. The
vorticity gives rise to non-commuting kinetic momenta. The two dimensional electron gas
is described as fluid with a density which obeys the Fermi-Dirac statistics. The presence of
the confinement potential gives rise to vanishing kinetic momenta in the vicinity of the
classical turning points. As a result, the Cartesian coordinate do not commute and gives
rise to a Hall current which in the presence of a modified Fermi-Surface caused by the
microwave field results in a rectified voltage. Using a Bosonized formulation of the two
dimensional gas in the presence of insulating regions allows us to compute the rectified
current. The proposed theory may explain the experimental results recently reported by
J. Zhang et al.

PACS numbers: 71.10.PM

I. Introduction
The topology of the ground state wave function plays a crucial role in determining the physical

properties of a many-particle system. These properties are revealed through the quantization

rules. It is known that Fermions and Bosons obey different quantization rules, while the quan-

tized Hall conductance [1] and the value of the spin-Hall conductivity are a result of non-com-

muting Cartesian coordinates [2]. Similarly the phenomena of quantum pumping observed in

one-dimensional electronic systems [3-5] is a result of a space-time cycle and can be expressed in

the language of non-commuting frequency  = it and coordinate x = ik as shown in ref[6].
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Recently, the phenomena of rectification current Ir(V) = [I(V) + I(-V)]/2 has been proposed as

a DC response to a low-frequency AC square voltage resulted from a strong 2kF scattering in a one

dimensional Luttinger liquid [7].

In a recent experiment [8], a two-dimensional electron gas (2DEG) GaAs with three insulating

antidots has been considered. A microwave field has been applied, and a DC voltage has been

measured. The experiment has been performed with and without a magnetic field. The major result

which occurs in the absence of the magnetic field is a change in sign of the rectified voltage when

the microwave frequency varies from 1.46 GHz to 17.41 GHz. This behavior can be understood

as being caused by the antidots, which create obstacles for the electrons.

We report in this letter a proposal for rectification. In section II we present a theory which

show that rectification can be viewed as a result of non-commuting coordinates. In section III we

present a qualitative model for rectification, namely the presence of vanishing wave function is

described by a vortex which induces non-commuting kinetic momenta. The sign the vorticity is

determined by the vanishing of the electronic density. The electronic fluid can be seen as a hard

core boson which carry flux, the removal of charge caused by the insulating region is equivalent

to a decrease of flux with respect the flux of the uniform fluid. Including in addition a confining

potential we obtain regions where the momentum vanishes. The combined effect non-commut-

ing kinetic momenta and confinement gives rise to non-commuting cartesian coordinates. In sec-

tion IV we use the Bosonization method to construct a quantitative theory which gives rise to a

set of equations of motion. Constructing an iterative solution of this equations reveals the phe-

nomena of rectifications explained in sections II and III.

II. Rectifications due to non-commuting coordinates

Due to the existence of the obstacles, the wave function of the electron vanishes in the domain

of the obstacles. This will give rise to a change in the wave function, | > | >= U†( )| >

where U†( ) is the unitary transformation (induced by the obstacle) and the coordinate coor-

dinate representation becomes, [1,2,9]. An interesting situa-

tion occurs when the wave function | > has zero's [1,2,9] or points of degeneracy [10] in the

momentum space. This gives rise to non -commuting coordinates [1,2,11]. As a result we will

have a situation where the the commutator [r1, r2] of the coordinates is non zero.
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Using the one particle hamiltonian  in the presence of an external electric field

with the commutators  one obtains [2] the Heisenberg

equations of motions,

This equations are identical with the one obtained in ref.[11] where  is the single par-

ticle energy being in the semi-classical approximation and E2(t) the external electric field. As a

result of the external electric field E2(t) changes the velocity changes according to eq.2. Using the

interaction picture we find,

V2(t) is the voltage caused by the external field E2(t). The Fermi Dirac occupation function

 in the presence of the electric field is used to sum over all

the single particle states. We obtain the current density J1(r) in the i = 1,

The result obtained in the last equation follows directly from the non-commuting coordinates

given by ( )  0. The current in eq. 1 depends on , the

Fermi- Dirac occupation function in the presence of the external voltage V2(t) � E2(t)L. We

expand the non equilibrium density  to first order in V2(t) we obtain the final form of the

rectified current. ( ) has dimensions of a frequency and can be replaced with the help of the

Larmor's theorem, by an effective magnetic field . This allows us to replace eq.

4 by the formula.
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III. A model for non-commuting coordinates

We consider a two dimensional electron gas (2DEG) in the presence of a parabolic confining

potential Vc( ). The 2DEG contains an insulting region of radius D caused by an infinite poten-

tial UI(r) (in the experiment the insulating region this is caused by three antidots) see figure 1a.

The effect of the insulating region of radius D causes the electronic wave function | (r; R) > to

vanish for   D. The spin of the electrons seems not to play any significant role, therefore

we approximate the 2DEG by a spinless charge system. Such a charged electronic system is equiv-

alent to a hard core charged Boson. For Bosonic wave function has zero's which can be described

as a vortex centered at .

We will show that the following properties are essential in order to have non-commuting coor-

dinates.

(1) The vanishing of the wave function for   D is described by a vortex localized at .

(2) The many particles will be described in term of a continuous Lagrange formulation

[12] . Here,  is the continuous form of , where "" denotes the particular par-

ticle,  = 1, 2, ..., N with a density function 0( ), which satisfies N/L2 =  0( )d2u in two dimen-

sions (L2 is the two dimensional area). The coordinate  and the momentum  obey

canonical commutation rules, .

(3) The parabolic confining parabolic potential  provides the confining length

LF, see figures 1a and 1b.

Using the conditions (1)–(3), we will show that the non-commuting coordinates emerge.

A. The vanishing of the wave function

In the literature it was established that the vanishing of the Bosonic wave function gives rise to a

multivalued phase and vorticity. See in particular the derivation given in ref. [13]. The vortex (the

insulating region) gives rise to non-commuting kinetic momenta,  where,

 and the phase  is caused by the localized vortex [13-15]. This result is

obtained in the following way:
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In the presence of a vortex the single particle operator is parametrize as follows:

 for  <D, and  for  > D. The field

( ) is a regular hard core boson field and  is a multivalued phase. As a result, the Ham-

iltonian  and the field  are replaced by the transformed Hamiltonian:

The momentum  is replaced by the kinetic momentum, . The derivative of

the multivalued phase  determines the vector potential . [1, 2]  0.
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(a)A confined 2DEG of size L × L with a classical turning point length LF which contains an insulating region of radius D centered at R (the location of the vanishing wave function)Figure 1
(a)A confined 2DEG of size L × L with a classical turning point length LF which contains an insulating region of radius 
D centered at R (the location of the vanishing wave function). (b) Particles close to the classical turning point LF, 
represented by the shaded area which satisfy the constraint 1 = 2 = 0.
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where  is an effective magnetic field due to the insulation region, which is defined as

. The sign of the magnetic field  is determined by the vorticity. Following

the theory presented in ref. [8] (see pages 94–99 and 222–227)  has positive vorticity since

the electronic density vanishes for the region  > D creating a hole on background density

(see figure 13.1 page 227 in ref.[8]).

For the remaining part of this paper we will replace the delta function by a step function

 which takes the value of one for  <D and zero otherwise.

B. The many particle representation

In the presence of hard core Bosons (spinless Fermions) the momenta is replaced by .

The static vortex describes the insulating region and modifies the momentum operator,

. Making use of this continuous formulation, we find a similar result

as we have for the single particles [13], i.e.,

where  = 1 for  <D and zero otherwise.

C. The confining potential

The last ingredient of our theory is provided by the confining potential and the Fermi energy. Due

to the confining potential the kinetic momentum has to vanishes for particles which have the coor-

dinate close to the classical turning point (see figure 1b) | |  LF, Efermi = Vc(| |  LF). This lead

to the following constraint problem for the kinetic momentum,

and

The kinetic momentum 1 (| |  LF) and 2(| |  LF) form a second class constraints (accord-

ing to Dirac's definition [9] the commutator of the constraints has to be non-zero) [1(| |  LF),
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2(| |  LF)]  0 if the region | |  LF overlaps with the vortex region   D. For  

D the commutator of the kinetic momenta is given by  given by eq.7.

We define the matrix . Using the function  (which

replaces the delta function) and the eqs.8,9 we obtain

The overlapping conditions are given by the conditions:  is equal to one for 

<D and zero otherwise and  describes the condition of the classical turning points.

Using eq.10 we find according to Dirac's second class constraints [9] the following new commu-

tator ,

For  <D we define a field  trough the equation,

This means that ( ) is approximated by   D2 for  <D.

Eq. 11 shows that the presence of the momentum,  with the con-

straints given by eqs. 8 and 9 gives rise to non-commuting coordinates .

Once we have the result that the coordinate do not commute we can use the analysis given in

eq 4 (and the result for the current I1 derived with the help of equation 4) to compute the rectified

current, .

This result can be derived by directly using a modified Bosonization method with a non-com-

muting Kac-Moody algebra [10,16].
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IV. Continuous formulation for the 2deg – a bosonization approach
A. Bosonization for the 2DEG

We introduce a continuous formulation for the 2DEG many particles system. We replace the sin-

gle particle Hamiltonian  by a many electron formulation [12]. We introduce a con-

tinuous representation, namely . Here,  is the continuous form of . The

coordinate and the momentum obey  and  The equilibrium Fermi-

Dirac density is given by 

One of the useful description for many electrons in two dimensions is the Bosonization

method. We will modify this method [10] in order to introduce the effect of the vortex field and

the confining potential .

B. The bosonization method in the absence of the insulating region and confining potential

In this section we will present the known [2,10] results for a two dimensional interacting metal

in the absence of the vortex field and confining potential . Our starting point is the Bosonized

form of the 2DEG given in ref. [10,16].

where  is the Landau function for the two body interaction [10] and the notation

:: represents the normal order with respect the Fermi Surface. [10]. According to ref.[10,16], the

F.S. is described by, . The "normal" deformation to the F.S. is given

by, . "s" is the polar angle on the F.S.  (s), and  (s) is the normal

to the F.S. The commutation relations for the F.S. are,

C. The modification of the bosonization method in the presence of a confining potential

Following ref. [17] (see the last term of eq.10 in ref. [17]), we incorporate into the Bosonic ham-

iltonian the effect of the confining and external potentials. We parametrize the Fermi surface in

terms of the polar angle s = [0 - 2] and the coordinate . The Fermi surface momentum 
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given by the solution, . As a result the the FERMI SURFACE (F.S.)

excitations is given by, . The "normal" deformation to the F.S. is

given by,  and  is the normal to the F.S. as a function of the

polar angle s and real space coordinate .

Following refs. [11,17], we obtain the Bosonized hamiltonian for the many particles system

in the presence of the potentials,  and time dependent external potential .

The new part of in the Bosonic hamiltonian is the presence of the confining 

and external potential .  is the external microwave radiation field,

The commutation relations for the FERMI SURFACE in are given by the Kack Moody commu-

tation relation [11,17]

D. The bosonization method in the presence of the insulating region and confining potential

This problem can be investigated using the hamiltonian given in eq.12 supplemented by the con-

straints conditions imposed by the vanishing density. described by a vortex. Using the results

given in eq.11 one modifies the commutation relations. This modification can be viewed as

Dirac's bracket due to second class constraints [9]. The commutator [,] is replaced by Dirac 's com-

mutators . The region of vanishing density is described by the function  for 

<D and zero otherwise. Using  we find that the Dirac commutator

 replaces the commutator given in equation 13
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The result given by eq. 14 due to non-commuting coordinates . We will

compare this result with the one for a magnetic field B,  given in ref.

[17]. The commutator for the two dimensional densities in the presence of a magnetic field B( )

perpendicular to the 2DEG has been obtained in ref. [10].

The modified commutator caused by the magnetic field (see eq. 27 in ref. [10]) is:

Where B( ) is the magnetic field and  is the derivative in the tan-

gential direction perpendicular to the vector (s) (the normal to the Fermi surface),

.

Using the analogy between the vortex field an the external magnetic field (eq. 15) we can rep-

resent equation 14 in terms of the parameters given in eq. 11.

where  is the derivative according to the tangential direction which

is perpendicular to the vector (s) with, .

The commutator given in equation 16 allows to investigate the physics given in the hamilto-

nian 12. Using this formulation we will compute the rectified current.
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We observe that the Dirac commutator,   0 is non-zero for s  s'! The

Heisenberg equation of motion will be given by the Dirac bracket. Due to the fact that different

channels s  s' do not commute, the application of an external electric field in the i =  direction

will generate a deformation for the F.S. with s  , .

Using this commutation relations given in equation 16 and the hamiltonian given in equa-

tion 12, we obtain the equation of motion,

We have included in the equation of motion a phenomenological relaxation time  for the kinetic

momentum. This equation shows that the direct effect caused by the electric field is proportional

to sin(s) with the maximum contribution at the polar angles,  and  where VF (s,

) is the Fermi velocity. The effect of the vortex is to generates a change in the kinetic momentum

perpendicular to the external electric field. This part is given by the last term. The last term is

restricted to  <D and represents the vortex contribution. This term is maximum for the

polar angles s = 0 and s = . The maximum effect will be obtained in the region close to the clas-

sical turning point where the Fermi velocity obeys, .

The current density in the i = 1 direction is given by the polar integration of s, [0 - 2].

We introduce the dimensionless parameter  which is a function of  and D the

radius of the insulating region. For values of  < 1 we can solve iteratively the equation of motion

and compute the current.

In the equation for the kinetic momentum we have included a phenomenological relaxation

time . This relaxation time will allow to perform times averages. We only keep single harmonics

and neglect higher harmonics of the microwave field.

 k s u k s u|| ||( , ), ,
 ′ ′( )⎡⎣ ⎤⎦

s ê
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The iterative solution is given as a series in  and the microwave amplitude Ec i.e.

.

Solving the equation of motion we determines the evolution of the Fermi surface deformation

in the presence of the microwave field. We substitute the iterative solution  obtained

from eq. 17 into the current density formula given by eq. 18.

V. Application of the theory to the experiment

In order to provide a physical interpretation of our theory we will use physical parameters deter-

mined by the experiment. In the experiment the electronic density is n � 1015m-2 this corresponds

to a Fermi energy of EF � 0.01eV, equivalent to a temperature of TF � 120K and a Fermi wave-

length of F � 0.5 × 10-7m. For high mobility GaAs, the typical scattering time is  � 10-11sec,

which corresponds to the mean free path l = F. The ratio between the mean free path and the

Fermi wave length obeys the condition, . Therefore, we can neglect multiple

scattering effects. When the thermal length is comparable with the size of the system

, one obtains a ballistic system with negligible multiple scattering.

We describe the confined 2DEG of size L as a system with a parabolic confining potential

 which has a "classical turning point" LF determined by the condition .

This condition describes the effective physics of a free electron gas of size L = LF . Demanding that

LF is of the order of the thermal wave length LF � thermal determines the confining frequency

. For this condition, we obtain a ballistic regime where L <LF ~ 10-7 – 10-6m, T ~

1 – 10K, 0 � 1010 – 1011 Hz and  � 10-11sec. In order to be able to observe quantum scattering

effects caused by the insulating region of radius "D", we require that the wavelength F obeys the

condition D > F � 0.5 × 10-7m.

To leading order in  < 1 and in second order in the microwave amplitude Ec we compute the

rectified D.C. voltage V1,D.C. in the i = 1 direction. This rectified voltage is defined as V1, D.C. = I1/

 ( is conductance in the semi classical approximation determined by the transport time which
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is proportional to the scattering time). The current I1 given by  with L  LF. The

microwave field is expressed in terms of an R.M.S. (effective) voltage VR.M.S. = EcL/  which

allows to define a dimensionless voltage in the i = 1 direction ,

where  with the function G() given in figure 2.

For 2DEG, we use typical parameters used in the experiment [8], i.e. electronic density n 

1015m-2 with a Fermi energy EF  0.01ev, 0  1010 – 1011Hz, momentum relaxation time   10-

11sec. and radius of the insulating region D > F  0.5 × 10-7m, with   0.7. We make a single

harmonic approximations (neglect terms which oscillate with frequencies 20, 30 ...) We have

used figure 3 in ref. [8] to extract the voltage changes as a function of the microwave field for a

zero magnetic field. Figure 3 in ref. [8] shows clearly a change of sign when the microwave varies

between 1.46 GHz to 34 GHz and vanishes at 17.41 GHz. In figure 2, we have plotted our results

given by the formula G() as a function of the microwave frequency with the rescaled experimen-
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The dimensionless voltage G(, ), as a function of x = /0 with the parameters  = II, tan() = //(2 - ),  = 0.7Figure 2

The dimensionless voltage G(, ), as a function of x = /0 with the parameters  = II, tan() = //(2 - ),  
= 0.7. The solid line represents the theory and the crosses "x" represent the experiment in ref. [8].
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tal points (see the three points on our theory graph). As shown we find a good agreement of our

theory with the experimental results once we choose 0 = 17.41 GHz. For frequencies which

obeys , we find good agreement with the experimental results. However, for

low frequencies, our theory is inadequate and does not fit the experiment.

VI. Conclusion
In conclusion, we can say that the origin of the rectification is the emergence of the non-commut-

ing Cartesian coordinates and the non-commuting density excitations are a result of the vortex

field accompanied the classical turning caused by the confining potential. Using the modified

KacK Moody commutations rule for the density excitations we find that excitations with different

polar angles s become coupled.

Using this theory we have explained the results of the experiment [8] in a region where the

magnetic field was zero.
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