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Abstract

We discuss the squeezing and statistical properties of the light produced by a coher-
ently driven degenerate three-level laser with a parametric amplifier. We consider the
case in which the atoms injected into the cavity are prepared in a coherent superpo-
sition of the top and bottom levels and with these levels coupled by the pump
mode emerging from the parametric amplifier. It so happens that the presence of
the parametric amplifier increases the squeezing and the mean photon number sig-
nificantly. Furthermore, it is found that the maximum interacavity squeezing is 93%
in the presence of the coupling and when the superposition has no contribution (h
= 0). On the other hand, the maximum interacavity squeezing turns out to be 94%
in the absence of the coupling. This squeezing is due to the parametric amplifier and
the superposition. In addition, our calculation shows that one effect of coupling the
top and bottom levels is to decrease the mean and the normally-ordered variance of
the photon number.
PACS codes: 42.55.Ah, 42.50.Lc, 42.50.Ar

1 Introduction
It has been established that a three-level laser under certain conditions generates

squeezed light [1-9]. In a cascade three-level laser, three-level atoms in a cascade con-

figuration are injected into a cavity coupled to a vacuum reservoir via a single-port

mirror. The injected atoms may initially be prepared in a coherent superposition of the

top and bottom levels and/or these levels may be coupled by strong coherent light

after they are injected into the cavity. The superposition or the coupling of the top and

bottom levels is responsible for the interesting nonclassical features of the generated

light. When a three-level atom in a cascade configuration makes a transition from the

top to the bottom level via the intermediate level, two photons are generated. If the

two photons have the same frequency, the three-level atom is called degenerate other-

wise it is called nondegenerate.

Some authors have studied the squeezing and statistical properties of the light pro-

duced by a three-level laser in which the crucial role is played by the superposition of

the top and bottom levels [1-7]. Ansari [7] has predicted that such a laser can generate

under certain conditions squeezed light. Furthermore, Lu and Zhu [2] have considered

a nondegenerate three-level laser with the atoms initially prepared in coherent super-

position of the top and bottom levels. They have predicted a maximum of 50% intera-

cavity two-mode squeezing.
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A three-level laser in which the top and bottom levels of the atoms injected into the

cavity are coupled by a strong light has also been studied by different authors [7-9].

Ansari et al [9] have considered a degenerate three-level laser, with the atoms initially

in the upper level and with the top and bottom levels of the atoms coupled by coher-

ent light. They have shown that this system behaves like a parametric oscillator for suf-

ficiently strong coherent light. They have also predicted that such a system can

generate squeezed light over large range of the amplitude of the coherent light.

Furthermore, it has been predicted theoretically [10-16] and subsequently confirmed

experimentally [17,18] that a parametric oscillator produces light with a maximum

interacavity squeezing of 50% below the coherent-state level. Some authors [19,20]

have considered a three-level laser whose cavity contains a parametric amplifier. Fes-

seha [19] has studied a three-level laser whose cavity contains a degenerate parametric

amplifier, and with the injected atoms prepared initially in coherent superposition of

the top and bottom levels. He has shown that the effect of the parametric amplifier is

to increase the interacavity squeezing by a maximum of 50%. He has also pointed out

that since the presence of the parametric amplifier also leads to a significant increase

in the mean photon number, the system can produce a bright and highly squeezed

light. Moreover, Alebachew and Fesseha [20] have considered a degenerate three-level

laser whose cavity contains a parametric amplifier, with the top and bottom levels of

the injected atoms coupled by the pump mode emerging from the parametric ampli-

fier. They have studied this system for the specific case in which the number of atoms

initially in the top and bottom levels are equal. They have found that this system gen-

erates under certain conditions a highly squeezed light. The squeezing in this case is

exclusively due to the parametric amplifier and the coupling of the top and bottom

levels.

In this paper we seek to study a degenerate three-level laser whose cavity contains a

parametric amplifier and with the cavity mode driven by a strong coherent light as

shown in Figure 1. Moreover, the three-level atoms injected into the cavity are initially

prepared in a coherent superposition of the top and bottom levels and with these levels

coupled by the pump mode emerging from the parametric amplifier. In order to deter-

mine the squeezing and statistical properties of the light produced by this quantum

optical system, we first derive c-number Langevin equations using the pertinent master

equation. Employing the solutions of the resulting c-number Langevin equations along

Figure 1 The system under consideration. A coherently driven degenerate three-level laser with a
parametric amplifier.
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with the properties of the noise forces, we calculate the quadrature variance of the cav-

ity and output modes. Applying the same solutions, we also obtain the antinormally

ordered characteristic function with the aid of which the Q function is determined.

The resulting Q function is then used to calculate the mean and the normally-ordered

variance of the photon number as well as the photon number distribution for the cav-

ity mode.

2 c-number Langevin Equations
Three-level atoms in a cascade configuration are injected at a constant rate into the

laser cavity. We denote the top, middle, and bottom levels of a three-level atom by |a〉,

|b〉, and |c〉, respectively. We assume the transitions |a〉 ® |b〉 and |b〉 ® |c〉 to be

dipole allowed, with the transition |a〉 ® |c〉 to be dipole forbidden. We consider the

case for which the cavity mode is at resonance with the two transitions |a〉 ® |b〉 and

|b〉 ® |c〉. We take the initial state of a three-level atom to be

| ( ) ( ) | ( ) | . A a cc a c c0 0 0     (1)

The initial density operator for the three-level atom can then be written as

ˆ ( ) | | | | | | | |( ) ( ) ( ) ( )    A aa ac ca cca a a c c a c c0 0 0 0 0        ,, (2)

in which aa ac
( ) | |0 2 , ac a cc c( )0   ,  ca c ac c( )0   ,  cc cc

( ) | |0 2 . It proves to be

convenient to introduce a new parameter h defined by [7]

 
aa
( ) .0 1

2
 

(3)

Using the fact that

 aa cc
( ) ( )0 0 1  (4)

along with

| | ,( ) ( ) ( )  ac aa cc
0 2 0 0 (5)

one easily finds

 
cc
( )0 1

2
 

(6)

and

| | .( ) ac
0 1

2
1 2  (7)

We note that the parameter h describes the coherent superposition of the top and

bottom levels at the initial time. Upon setting

  
ac ac

ie( ) ( )| | ,0 0 (8)
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expression (2) can be put in the form

ˆ ( ) | | | | | | |     
A

i ia a e a c e c a c0
1

2
1
2

1
1
2

1
1

2
2 2            c | . (9)

The interaction of a three-level atom with the cavity mode and the pump mode

emerging from the parametric amplifier, the parametric down-conversion, and the

interaction of the driving light with the cavity mode can be described by the Hamilto-

nian

ˆ ( ˆ (| | | |) ˆ(| | | |))

(| | |

†H ig a b a c b a a b b c

i
c a a

       

   
2

    c
i

a a i a a|) ( ˆ ˆ ) ( ˆ ˆ),† † 
2

2 2
(10)

in which â is the annihilation operator for the cavity mode, g is the atom-cavity

mode coupling constant (assumed to be the same for all the three-levels), Ω = 2lb0
(with b0 and l being the amplitude of the pump mode and the atom-pump mode cou-

pling constant), ε = l’b0 (with l’ being the coupling constant between the pump mode

and the signal mode), and μ is proportional to the amplitude of the driving light. Now

taking into account the interaction of the cavity mode with the vacuum reservoir and

for θ = 0, the master equation for the cavity mode of the quantum optical system

under consideration is found in the linear and adiabatic approximation schemes to be

[3]

d
dt

a a pa a a a a a
ˆ

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †                
2

2 2 2 22

2 2

)

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † † †     R a a aa aa S a a a a a a     ))

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †      U a a a a a a V a a a a a      2 2 2  ˆ ˆ),†a 2

(11)

where

R
A
B

     








4 2

1
3
2

1 1
2

22( ) ( ) ,


    (12)

S
A
B

B
A

      








4

2
1

2
3
2

1 1
2

2 2 
   ( ) ( ) , (13)

U
A
B

     








4

3
2 2

1 1
2 2

2
2

3




  
( ) ( ) , (14)

V
A
B

     








4

3
2 2

1 1
2 2

2
2

3




  
( ) ( ) . (15)

with




 
, (16)
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B   ( / )( ),1 4 12 2  (17)

and

A
r ga 2 2

2
. (18)

Here g, considered to be the same for all the three-levels, is the atomic decay con-

stant and A is the linear gain coefficient.

Now employing the relation

d
dt

z a a Tr d
dt

z a a  
















 


 
( , ) ( , )

† †
(19)

along with the master equation (11), one readily finds the following equations:

d
dt

a t R S a t U V a t          ˆ( ) ( ) ˆ( ) ( )( ˆ ( ) ,†  (20)

d
dt

a t R S a t U V a t a t

a t

          

  

ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( )ˆ( )

ˆ( )

†2 22 2

2



  ( ), 2V
(21)

and

d
dt

a t a t R S a t a t U V a t

a

          



    



† † †( ) ( ) ( ) ( ) ( ) ( )( ( )2 2

22 2( ) ) ( ( ) ( ) ) .†t a t a t R         

(22)

We note that the operators in the above set of equations are in the normal order.

Thus the c-number equations associated with this ordering are

d
dt

t S R t U V t                ( ) ( ) ( ) ( ) ( ) , (23)

d
dt

t S R t U V t t t                       2 22 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 22V), (24)

and

d
dt

t t S R t t U V t t                ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( )2 2 2 )) ( ( ) ( ) ) .       t t R2 (25)

We claim that the equation of evolution of a(t) (c-number Langevin equation) can

be obtained from that of 〈a(t)〉. This can be achieved by dropping the angular brackets

in Eq. (23) and adding a noise force f(t), so that

d
dt

t S R t U V t f t    ( ) ( ) ( ) ( ) ( ) ( ).        (26)
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With the aid of Eqs. (23), (24), (25), and (26), one can readily establish the correla-

tion properties of the noise force [3]

  f t( ) ,0 (27)

      f t f t V t t( ) ( ) ( ) ( ), 2 (28)

and

          f t f t f t f t R t t( ) ( ) ( ) ( ) ( ).2  (29)

Now introducing a new variable defined by

  
 ( ) ( ) ( ),t t t (30)

one can easily show using (26) and its complex conjugate that

d
dt

t t f t f t     
     ( ) ( ) ( ) ( ) ( ), (31)

where

     ( ) ( ).S R U V (32)

The solution of (31) can be put in the form

    
 

           ( ) ( ) [ ( ) ( )] .( )t e e f t f t dtt t tt
0

0

  (33)

so that in view of (30), there follows

  ( ) ( ) ( ) ( ) ( ) ( ) ( ),t B t B t E t F t    
0 0 (34)

in which

B t e et t


   ( ) ( ),
1
2

  (35)

E t e t( ) ( ),


  


1 (36)

and

F t F t F t( ) ( ) ( ),   (37)

with

F e f t f t dtt tt


       1

2 0

( )( ( ) ( )) . (38)
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3 Quadrature Squeezing of the Cavity Mode
The squeezing properties of a single-mode light are described by two quadrature

operators

ˆ ˆ ˆ †a a a   (39)

and

  a i a a  ( ).† (40)

The quadrature variance, defined by

a t a t a t       2 2 2( ) ( ) ( ) , (41)

can be expressed in terms of c-number variables associated with the normal ordering

as

a t t t     2 1( ) ( ), ( ) .  (42)

Employing (33) along with (27), (28), and (29), we obtain at steady state

   


 


( )t ss


(43)

and

      





 


2
2

2

2 2
( )

( ) ( )
.t

V R
ss

 

(44)

Hence substitution of these results into (42) yields

a V R
ss    2 1

2 2


. (45)

Furthermore, on account of (12)-(15), expression (32) takes the form

       
 




 

   
 2

3 1 2

4 1 1 4

2 2 3

2 2

A A A( ) ( )

( )( / )
. (46)

Finally, application of (12), (15), and (46) in (45) leads to

a
A A A

 
      



2 2 1 2 1 2 4 2 2 1 2 2 1 2 3

2 4 1

      

  

( )( / ) ( ) ( )

( )(



 22 1 2 4 3 1 2 3 2 2)( / ) ( ) ( )
.

           A A A
(47)

We see from (47) that the driving light has no effect on the quadrature variance.

Now inspection of (46) shows that l+ is nonnegative while l- can be positive, negative,

or zero. It turns out to be useful to write (46) as

   G , (48)

Darge and Kassahun PMC Physics B 2010, 3:1
http://www.physmathcentral.com/1754-0429/3/1

Page 7 of 18



with

G
A A A

 
    

 
      

 2

3 1 2

4 1 1 4

2 3

2 2

( ) ( )

( )( / )
. (49)

We observe that the equation of evolution of a-(t), described by (31), does not have a

well-behaved solution for ε >G. We then identify ε = G as the threshold condition.

We next proceed to analyze the quadrature variance of the light generated by the system

operating below threshold. Using (47) and (49) and writing a simple Matlab program, we

have obtained for A = 100 and � = 0.8 the values of h, b, ε, and a
2 for which (31) has a

solution. It so turns out that this equation has a solution for -0.5 ≤ h ≤ 1 and for 0 ≤ b ≤

1.4. We indicate in Table 1 the values of h, b, and ε corresponding to the two smallest

values of the quadrature variance. We note that when there are equal number of atoms

initially in the top and bottom levels (h = 0), the maximum interacavity squeezing is 93%

below the coherent-state level for b = 0.1. On the other hand, when there are slightly

more atoms initially in the bottom level than in the top level (h = 0.1), the maximum

interacavity squeezing is found to be 94% below the coherent-state level for b = 0.

It is interesting to examine some special cases. First we consider the case in which the

nonlinear crystal is removed from the cavity, with the top and bottom levels of the atoms

coupled by the pump mode. Thus upon setting ε = 0 (with b0 ≠ 0) in Eq. (47), we get

a
A A A

 
      

 

2 2 1 2 1 2 4 2 2 1 2 2 1 2 3

2 1 2 1

      

 

( )( / ) ( ) ( )

( )(



      2 4 3 1 2 3 2 2/ ) ( ) ( )
.

    A A A
(50)

It can be shown using (50) that for h = 0, b = 0, and any values of A and � the light

generated is not in a squeezed state. However, for h = 0, A = 100, and � = 0.8 we

readily get applying the same equation that the maximum squeezing to be 89% for b =

0. We therefore infer that the squeezing in this case is exclusively due to the coupling

of the top and bottom levels. Moreover, for h = 0.1 and for the above values of A and

�, we find the maximum squeezing to be 88% for b = 0. This squeezing is exclusively

due to the superposition of the top and bottom levels. In addition, inspection of the

plots in Figure 2 shows that for small values of the amplitude of the pump mode, the

coupling of the top and bottom levels significantly enhances the intracavity squeezing

particularly when there are equal number of atoms initially in the top and bottom

levels (h = 0). Otherwise, it leads to the decrease in the intercavity squeezing. On the

other hand, for a strong pump mode (b ≫ 1), Eq. (50) takes the form

a

A A A

A A A 
  

  

2
2

2
2 3

2
2

2

2
1

2 3

2
3

1





 







 






, (51)

Table 1 Quadrature variance

Quadrature Variance

h b G ε a
2

0 0.1000 5.3135 5.3000 0.0731

0.1000 0 5.4000 5.3000 0.0608

Values of a
2 for A = 100 and � = 0.8.
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so that on dropping the terms
A

 2 and
A

 3 , there follows

a
A 2 1

1
2




.
(52)

This result indicates that a degenerate three-level laser driven by a strong light

behaves like a degenerate parametric oscillator [9].

Furthermore, we consider the special case in which the pump mode emerging from

the nonlinear crystal does not couple the top and bottom levels. Hence upon setting

b = 0 (with b0 ≠ 0), Eq. (47) reduces to [19]

a A

A    


2
1 21 1

2
 

  
[ ( ) ]

.
/


(53)

It is apparent that ε is the only parameter representing the parametric amplifier. And

inspection of Eq. (53) shows that one effect of the parametric amplifier is to decrease

the value of the variance of the minus quadrature.

The plots in Figure 3 clearly indicate that the presence of the nonlinear crystal leads

to better squeezing. In addition, applying Eq. (53) with A = 100, k = 0.8, and h = 0.1

the maximum interacavity squeezing is 94% below the coherent-state level for ε = 5.3.

4 Quadrature Squeezing of the Output Mode
Using the input-output relation, one can readily establish that the quadrature variance

for the output mode is expressible as [3]

  a a aout in    2 2 21 ( ) , (54)
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Figure 2 Effect of the coupling on the quadrature variance. Plots of the quadrature variance [Eq. (50)]
versus h for A = 100, � = 0.8, and different values of b.
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where the first and the second terms represent the quadrature variance for the trans-

mitted and reflected output mode. Taking into account (45) and the fact that the

quadrature variance for the vacuum reservoir is unity, we get

a t
V R

out    2 1
2 2

( )
( )

.
 


(55)

It can be seen from the plots in Figure 4 that in general the cavity mode squeezing is

greater than the output mode squeezing. Furthermore, applying Eq. (55) with h = 0.1,

ε = 5.3, A = 100, and � = 0.8, the maximum squeezing for the output mode is found

to be 75% (occurs at b = 0).

5 Photon Statistics of the Cavity Mode
In order to determine the photon statistics of the cavity mode, we first obtain the Q

function. The Q function for a single-mode light can be written as

Q t dz z t exp z z( , , ) ( , ) ( ), 


     1
2

2 (56)

with the characteristic function j(z*, z, t) defined in the Heisenberg picture by

 ( , , ) ( ( ) ).( ) ( )z z t Tr e ez a t za t 


0 (57)

This can be expressed in terms of c-number variables associated with the normal

ordering as [3]

  ( , , ) ( ) .z z t e exp z zz z      


(58)
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Figure 3 Effect of the parametric amplifier on the quadrature variance. Plots of the quadrature
variance [Eq. (53)] versus h for A = 100, � = 0.8, and different values of ε.
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One can rewrite (34) as

 ( ) ( ) ( ),t t E t   (59)

where

    
  ( ) ( ) ( ) ( ) ( ) ( ).t B t B t F t0 0 (60)

On account of (59) and its complex conjugate, we have

  ( , , ) ( ) .( )z z t e exp z zz z z z E          
 

(61)

Now with the aid of (60) along with (32), (35), (37), and (38), the equation of evolu-

tion of the expectation value of a'(t) can be written as

d
dt

t S R t U V t                 ( ) ( ) ( ) ( ) ( ) . (62)

We see from this equation that a'(t) is a Gaussian variable. In addition, on account

of (60) along with the assumption that the cavity mode is initially in a vacuum state,

we easily see that 〈a'(t)〉 = 0. Hence a'(t) is a Gaussian variable with a vanishing mean.

One can then express (61) in the form [3]

    ( , , ) [ ]( )z z t e exp z z zzzz z z E               


  1
2

22 2 2 2 

. (63)
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Figure 4 Quadrature variance of the output mode. Plots of the quadrature variance for the cavity
mode [Eq. (47), solid curve] and for the output mode [Eq. (55), dashed curve] versus h for b = 0.1, ε = 5.3,
A = 100, and � = 0.8.
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On the other hand, employing Eqs. (37), (38), and (60) along with the correlation

properties of the noise force, one readily finds

     


   


   





 2 2 22 2

4
1

2 2
4

1( ) ( ) ( )t
R V

e
R V

et t (64)

and

      


   


     





 ( ) ( ) ( ) ( ).t t

R V
e

R V
et t2 2

4
1

2 2
4

12 2 (65)

On substituting (64) and (65) into Eq. (63), there follows

( , , ) ( ( ) ( ) ),z z t exp az z
b

z z z z E        
2

2 (66)

in which

a
R V

e
R V

et t   


   


  1

2 2
4

1
2 2

4
12 2





 ( ) ( ) (67)

and

b
R V

e
R V

et t  


   


  2 2

4
1

2 2
4

12 2





 ( ) ( ). (68)

Now introducing (66) into Eq. (56) and carrying out the integration, we obtain

Q t
c d

c E E E

d
E E

( , , )
( )

exp[ ( )

(

 


   

  

  



     

   

2 2
1
2

2

2 2

2
2 2    2 2E )],

(69)

where

c
a

a b


2 2
(70)

and

d
b

a b


2 2
. (71)

5.1 Mean and variance of the photon number

The interacavity photon number is represented by the operator

ˆ ˆ ˆ.†n a a (72)
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On the other hand, the expectation value of an operator function ˆ( ˆ , ˆ)†A a a can be

expressed in terms of the Q function as

   ˆ ( ) ( ),A d Q A  2 (73)

in which A(a) is the c-number function corresponding to the operator function
ˆ( ˆ , ˆ)†A a a in the antinormal order. The mean of the photon number for the cavity

mode can therefore be written as

n d Q     2 1( )( ), (74)

so that applying the Q function (69) and carrying out the integration, we get

n E a  2 1. (75)

On account of Eqs. (36) and (67), the mean of the photon number for the cavity

mode is found at steady state to be

n
R V R V

ss       

  










2

2

2 2
4

2 2
4

. (76)

The plots in Figure 5 clearly indicate that the parametric amplifier and the driving

light contribute significantly to the mean of the photon number. On the other hand,

the plots in Figure 6 show that the mean of the photon number decreases with h. This
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n

Figure 5 The mean of the photon number. The mean of the photon number [Eq. (76) with b = 0.04, A
= 100, and � = 0.8] versus h for ε = μ = 0 (solid curve), for ε = 3.5 and μ = 0 (dashed curve), and for ε =
3.5 and μ = 5 (dotted curve).

Darge and Kassahun PMC Physics B 2010, 3:1
http://www.physmathcentral.com/1754-0429/3/1

Page 13 of 18



must be due to stimulated emission induced by the pump mode. The photons emitted

this way are not included in the mean photon number for the cavity mode.

We next proceed to calculate the normally-ordered variance of the photon number for

the cavity mode. The normally-ordered variance of the photon number is defined as [21]

: : : : .n n n2 2 2       (77)

With the aid of Eq. (72), the normally-ordered variance of the photon number can be

put in the form

: : , n n n2 2   (78)

with Δn2 and n being the variance and the mean of the photon number for the

cavity mode. Furthermore, the variance of the photon number can be expressed as

n a a n n2 2 2 2 3 2     ˆ ˆ .† (79)

Employing (73) one can write

   ˆ ˆ ( ) .†a a d Q2 2 2 2 2    (80)

Now applying the Q function (69) in Eq. (80) and performing the integration, we

obtain

      ˆ ˆ ,†a a E E a E b a b2 2 4 2 2 2 24 2 2 (81)
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Figure 6 Effect of the coupling on the mean of the photon number. The mean of the photon
number [Eq. (76)] versus h for ε = 3.5, μ = 5, A = 100, � = 0.8, and different values of b.
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so that substitution of (75) and (81) into Eq. (79) results in

n E a a b E b E a2 2 2 2 2 22 2      . (82)

On account of Eqs. (36), (67), and (68), the variance of the photon number at steady

state turns out to be

n n
R V R V R V

ss ss
2

2
4 2

2
2 2

4
2

2 2
4

2
2 2 



 











 

 











  
























4

2

. (83)

Hence in view of this result, the normally-ordered variance of the photon number

(77) goes over into

: :n R V R V R V
ss
2

2
4 2

2
2 2

4
2

2 2
4

2
2 2



 











 

 











   










44

2











 . (84)

We see from Figure 7 that the normally-ordered variance of the photon number is

positive. This indicates that the photon number statistics is super-Poissonian. In addi-

tion, we note that one effect of the coupling of the top and bottom levels is to decrease

the normally-ordered variance of the photon number.

5.2 Photon number distribution

The photon number distribution for a single-mode light is expressible in terms of the

Q function as [3]

P n t
n

Q t e
n

n n
( , )

!
( , , ) . 

 








 






 

   

 

2

0
(85)
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Figure 7 The normally-ordered variance of the photon number. Plots of the normally-ordered variance
of the photon number [Eq. (84)] versus h for ε = 3.5, μ = 5, A = 100, � = 0.8, and b = 0.2 (solid curve) and
b = 0.3 (dotted curve).
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Now using the Q function (69), the photon number distribution for the cavity mode

under consideration is found to be

P n t c d e

n c cE dE

c d E

l m i n i l m

( , ) ( )

!( ) ( ) ( )

/ ( )

( )

 

  

 

   

2 2 1 2

2

2

1 1 dd

i l m n i l n i m

l m

l m
ilm



     2 2 2! ! !( )!( )!
.

(86)

It is interesting to consider the special case in which the coherent driving light is

absent (μ = 0). Thus upon setting μ = 0 in Eq. (36), we get

E  0. (87)

With the aid of this, we find

l m (88)

and

l n i ( ) / .2 (89)

Hence on account of Eqs. (87) and (89) along with the fact that a factorial is defined

for nonnegative integers, the photon number distribution can be put in the form [19]

P n t c d
n c d

n l l

n l l

l
l

n

( , ) ( )
!( )

( )! !
,/

[ ]

  




2 2 1 2
2 2

2

1

2 2 2
(90)

where [ ]n n 2 for even n and [ ]n n 1
2 for odd n. As can be seen from Figure 8

the steady-state photon number distribution decreases with the photon number.

Though the photons are generated in pairs in this quantum optical system, there is a

finite probability to find odd number of photons inside the cavity. This is due to the
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Figure 8 The photon number distribution. Plots of the photon number distribution [Eq. (90)] at steady
state versus the photon number for b = 0, h = 0.1, A = 100, � = 0.8, and ε = 5.3 (solid curve) and ε = 0
(dotted curve).
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damping of the cavity mode. In addition, the probability of finding even number of

photons is in general greater than the probability of finding odd number of photons.

One can also obtain using Eq. (90) that the probability of finding n photons, with n ≤

17, is smaller for the light generated by the three-level laser with the parametric ampli-

fier. And the opposite of this holds for n > 17.

6 Conclusions
In this paper we have seen the simplicity with which the squeezing and statistical

properties of the light, generated by a coherently driven degenerate three-level lasers

whose cavity contains a parametric amplifier, could be analyzed with the aid of c-num-

ber Langevin equations. Applying the solutions of these equations, we have calculated

the quadrature variance for the cavity and output modes. Our results show that the

presence of the parametric amplifier increases the squeezing of the light generated by

the system under consideration, while the driving light has no effect on the squeezing.

Furthermore, it so happens that for small values of the amplitude of the pump mode,

the coupling of the top and bottom levels enhances the degree of the intracavity

squeezing significantly for h = 0. Otherwise, it leads to a decrease in the intercavity

squeezing.

It so turns out that for h = 0, A = 100, and � = 0.8 the maximum interacavity

squeezing is 93% below the coherent-state level (occurs at b = 0.1). This squeezing is

exclusively due to the parametric amplifier and the coupling of the top and bottom

levels. Furthermore, for h = 0.1 and the above values of A and � the maximum intera-

cavity squeezing is found to be 94% below the coherent-state level (occurs at b = 0).

This squeezing is due to the parametric amplifier and the superposition of the top and

bottom levels. In addition, we have shown that the cavity mode squeezing is greater

than the output mode squeezing by 19%. On the other hand, we have determined via

the Q function the mean and the normally-ordered variance of the photon number

and the photon number distribution for the cavity mode. From the results we have

found, we note that the driving coherent light and the parametric amplifier increase

the mean of the photon number significantly. We have seen that one effect of the cou-

pling of the top and bottom levels is to decrease the mean and normally-ordered var-

iance of the photon number. This could be due to stimulated emission induced by the

pump mode. The photons emitted this way do not contribute to the mean photon

number of the cavity mode. Furthermore, we have also observed that the photon num-

ber statistics is super-Poissonian. In addition, we have found that there is a finite prob-

ability to find odd number of photons inside the cavity.

Acknowledgements
One of the authors, Tewodros, would like to thank the Abdus Salam ICTP for financial support.

Received: 1 January 2010 Accepted: 24 March 2010 Published: 24 March 2010

References
1. Scully MO, Zubairy MS: Opt Commun 1988, 66:303.
2. Lu N, Zhu SY: Phys Rev A 1990, 41:2865.
3. Fesseha K: Fundamentals of Quantum Optics (Lulu, North Carolina) 2008.
4. Scully MO, Wodkiewicz K, Zubairy MS, Bergou J, Lu N, Meyerter Veh J: Phys Rev Lett 1988, 60:1832.
5. Anwar J, Zubairy MS: Phys Rev A 1994, 49:481.
6. Lu N, Zhu SY: Phys Rev A 1989, 40:5735.
7. Ansari NA: Phys Rev A 1993, 48:4686.

Darge and Kassahun PMC Physics B 2010, 3:1
http://www.physmathcentral.com/1754-0429/3/1

Page 17 of 18



8. Tesfa S: J Phys B: At Mol Opt Phys 2008, 41:145501.
9. Ansari NA, Gea-Banacloche J, Zubairy MS: Phys Rev A 1990, 41:5179.
10. Anwar J, Zubairy MS: Phys Rev A 1992, 45:1804.
11. Fesseha K: Opt commun 1998, 156:145.
12. Agrawal GS, Adam G: Phys Rev A 1989, 39:6259.
13. Vyas R, Singh S: Phys Rev A 1989, 40:5147.
14. Daniel B, Fesseha K: Opt Commun 1998, 151:384.
15. Collet MJ, Gardiner CW: Phys Rev A 1984, 30:1386.
16. Milburn GJ, Walls DF: Phys Rev A 1983, 27:392.
17. Wu LA, Xiao M, Kimble HJ: J Opt Soc Am B 1987, 4:1465.
18. Xiao M, Wu LA, Kimble HJ: Phys Rev Lett 1992, 59:278.
19. Fesseha K: Phys Rev A 2001, 63:033811.
20. Alebachew E, Fesseha K: Opt Commun 2006, 265:314.
21. Barnett SM, Radmore PM: Methods in Theoretical Quantum Optics Oxford University Press, New York 1997.

doi:10.1186/1754-0429-3-1
Cite this article as: Darge and Kassahun: Coherently driven degenerate three-level laser with parametric
amplifier. PMC Physics B 2010 3:1.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Darge and Kassahun PMC Physics B 2010, 3:1
http://www.physmathcentral.com/1754-0429/3/1

Page 18 of 18


	Abstract
	1 Introduction
	2 c-number Langevin Equations
	3 Quadrature Squeezing of the Cavity Mode
	4 Quadrature Squeezing of the Output Mode
	5 Photon Statistics of the Cavity Mode
	5.1 Mean and variance of the photon number
	5.2 Photon number distribution

	6 Conclusions
	Acknowledgements
	References

